
COLORADO COUNTY

GLO NO. 20-065-079-C231 **ROADWAY AND DRAINAGE IMPROVEMENTS** FOR HURRICANE HARVEY DISASTER RELIEF PROGRAM

CR 103 CULVERT REPLACEMENT

CR 103 AT SKULL CREEK

COLORADO COUNTY, TEXAS

PREPARED FOR:

COLORADO COUNTY **400 SPRING STREET** COLUMBUS, TX 78934

JANUARY 2021

ENGINEER:

FSC INC. 2205 WALNUT STREET COLUMBUS, TEXAS 78934 PH: (855) 637-5725

SURVEYOR:

FSC INC. 2205 WALNUT STREET COLUMBUS, TEXAS 78934 PH: (855) 637-5725

HORIZONTAL DATUM: NAD83/2011 (EPOCH 2010) VERTICAL DATUM: NAVD 88 COMBINED SCALE FACTOR: 0.9998785928

THIS CROSSING LIES WITHIN THE 100 YEAR FLOODPLAIN AS PER FIRM PANEL NO. 48089C0425D (MAP REVISION 02/04/2011). IT IS LOCATED WITHING THE SKULL CREEK DRAINAGE BASIN.

COLORADO COUNTY

TY PRAUSE DOUG WESSELLS DARRELL KUBESCH **KEITH NEUENDORFF** DARRELL GERTSON

COUNTY JUDGE COUNTY COMMISSIONER PCT. #1 COUNTY COMMISSIONER PCT. #2 COUNTY COMMISSIONER PCT. #3 COUNTY COMMISSIONER PCT, #4

SHEET NO.

DESCRIPTION

GENERAL

TITLE SHEET INDEX OF SHEETS GENERAL NOTES - 3 PROJECT LAYOUT TYPICAL SECTIONS 5 TRAFFIC CONTROL PLAN TRAFFIC CONTROL PLAN * BC(1)-14 - BARRICADE AND CONSTRUCTION GENERAL NOTES AND REQUIREMENTS * BC(2)-14 - BARRICADE AND CONSTRUCTION PROJECT LIMIT * BC(3)-14 - BARRICADE AND CONSTRUCTION WORK ZONE SPEED LIMIT * BC(4)-14 - BARRICADE AND CONSTRUCTION TEMPORARY SIGN NOTES 10 * BC(5)-14 - BARRICADE AND CONSTRUCTION TYPICAL SIGN SUPPORT 11 * BC(6)-14 - BARRICADE AND CONSTRUCTION PORTABLE CHANGEABLE MESSAGE SIGN (PCMS) 12 * BC(7)-14 - BARRICADE AND CONSTRUCTION ARROW PANEL, REFLECTORS, WARNING LIGHTS & ATTENUATOR 13 * BC(8)-14 - BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES 14 * BC(9)-14 - BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES 15 * BC(10)-14 - BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES 16 * BC(11)-14 - BARRICADE AND CONSTRUCTION PAVEMENT MARKINGS 17 * BC(12)-14 - BARRICADE AND CONSTRUCTION PAVEMENT MARKING PATTERNS 18 ROADWAY DETAILS HORIZONTAL ALIGNMENT DATA SHEET 19 CR 103 CULVERTS PLAN & PROFILE 20 DRAINAGE DETAILS CR 103 CUVLERTS HDRAULIC CALCULATIONS (EXISTING) 21 CR 103 CUVLERTS HDRAULIC CALCULATIONS (PROPOSED) 22 23 BOX CULVERT SUPPLEMENT - WINGS AND END TREATMENTS 24 * CRR - CONCRETE RIPPRAP AND SHOULDER DRAINS (EMBANKMENTS AT BRIDGE ENDS) (TYPES RR8 & RR9) * SCP-6 - SINGLE BOX CULVERTS - PRECAST 6'-0" SPAN 25 26 * SCP-MD - BOX CULVERTS PRECAST MISCELLANEOUS DETAILS * PW - CONCRETE WINGWALLS WITH PARALLEL WINGS FOR BOX CULVERTS - TYPES PW-1 AND PW-2 27 TRAFFIC ITEMS 28 * D&OM(1)-20 - DELINEATOR & OBJECT MARKER INSTALLATION AND MATERIAL DESCRIPTION * D&OM(2)-20 - DELINEATOR & OBJECT MARKER INSTALLATION 29 * D&OM(3)-20 - DELINEATOR & OBJECT MARKER PLACEMENT DETAILS 30 31 * D&OM(4)-20 - DELINEATOR & OBJECT MARKER PLACEMENT DETAILS 32 * D&OM(VIA)-15 - DELINEATORS & OBJECT MARKERS FOR VEHICLE IMPACT ATTENUATORS ENVIRONMENTAL 33 EPIC - ENVIRONMENTAL PERMITS ISSUES AND COMMITMENTS 34 EROSION CONTROL PLAN TXDOT STORM WATER POLLUTION PREVENTION PLAN (SW3P) 35 * EC(1)-16 - TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES (FENCE AND VERTICAL TRACKING) 36 37 * EC(2)-16 - TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES (ROCK FILTER DAMS) * EC(2)-16 - TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES (CONSTRUCTION EXITS) 38 39 * EC(4)-16 - TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES (DIKES - EARTHWORK FOR EROSION CONTROL) 40 * EC(6)-16 - TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES (SEDIMENT BASINS AND TRAPS - EARTHWORK FOR EROSION CONTROL)

* THE STANDARD SHEETS SPECIFICALLY IDENTIFIED ABOVER HAVE BEEN ISSUED BY ME AND ARE APPLICABLE TO THIS PROJECT. <u>KIRK E. LOWE, P.E.</u> <u>102219</u> <u>10219</u> <u>01/15/2021</u> DATE

GENERAL NOTES

- 1. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH COLORADO COUNTY STANDARD SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 2. ANY EXISTING UTILITIES, PAVEMENT, CURBS, SIDEWALKS, STRUCTURES, TREES, ETC. NOT PLANNED FOR DESTRUCTION OR REMOVAL THAT ARE DAMAGED OR REMOVED SHALL BE REPAIRED OR REPLACED AT THE CONTRACTOR'S EXPENSE.
- 3. THE CONTRACTOR SHALL VERIFY ALL DEPTHS AND LOCATIONS OF UTILITIES PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES WITH THE CONSTRUCTION PLANS FOUND IN THE FIELD SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.
- 4. MANHOLE FRAMES, COVERS, VALVES, CLEANOUTS, ETC. SHALL BE RAISED TO FINISHED GRADE PRIOR TO FINAL PAVING CONSTRUCTION.
- 5. THE CONTRACTOR SHALL GIVE COLORADO COUNTY 48 HOURS NOTICE BEFORE BEGINNING EACH PHASE OF CONSTRUCTION.
- 6. ALL AREAS DISTURBED OR EXPOSED DURING CONSTRUCTION SHALL BE REVEGETATED IN ACCORDANCE WITH THE PLANS AND SPECIFICATIONS. REVEGETATION OF ALL DISTURBED OR EXPOSED AREAS SHALL CONSIST OF SODDING OR SEEDING, AT THE CONTRACTOR'S OPTION. HOWEVER, THE TYPE OF REGETATION MUST EQUAL OR EXCEED THE TYPE OF VEGETATION PRESENT BEFORE CONSTRUCTION.
- 7. THE PROPOSED PAVEMENT SECTION WAS PROVIDED BY OWNER AND SHALL BE IN ACCORDANCE WITH TXDOT STANDARD SPECIFICATIONS (2014).
- 8. THE CONTRACTOR SHALL EVALUATE EXPOSED SUBGRADE FOR MOISTURE AND DENSITY PRIOR TO PLACEMENT OF FILL. THE SUBGRADE SHOULD BE WITHIN 2% OF THE OPTIMUM MOISTURE CONTENT AND HAVE AN IN-PLACE DRY DENSITY OF AT LEAST 95% OF THE STANDARD EFFORT (ASTM D 698) MAX DRY DENSITY OF THE IN-SITU SOILS.

STREET AND DRAINAGE NOTES

- 1. ALL TESTING SHALL BE DONE BY AN INDEPENDENT LABORAROTY AT THE OWNER'S EXPENSE. ANY RE-TESTING SHALL BE PAID FOR BY THE CONTRACTOR. A COUNTY INSPECTOR SHALL BE PRESENT DURING ALL TESTS. TESTING SHALL BE COORDINATED WITH THE COUNTY INSPECTOR, WHO SHALL BE GIVEN 24 HOURS NOTICE PRIOR TO ANY TESTING.
- 2. BACKFILL BEHIND THE CURB SHALL BE COMPACTED TO OBRAIN A MINIMUM OF 95% MAXIMUM DENSITY TO WITHIN 3" OF THE TOP OF CURB. MATERIAL USED SHALL BE PRIMARILY GRANULAR WITH NO ROCKS LARGER THAN 6" IN THE GREATEST DIMENSION THE REMAINING 3" SHALL BE CLEAN TOPSOIL FREE FROM ALL CLODS ANS SUITABLE FOR SUSTAINING PLANT LIFE.
- 3. DEPTH OF COVER FOR ALL CROSSINGS UNDER PAVEMENT INCLUDING GAS, ELECTRIC, TELEPHONE, CABLE TV, WATER SERVICES, ETC., SHALL BE A MINIMUM OF 30" BELOW SUBGRADE
- 4. BARRICADES BUILT TO COLORADO COUNTY STANDARDS SHALL BE CONSTRUCTED ON ALL DEAD-END SHEETS AND AS NECESSARY DURCING CONSTRUCTION TO MAINTAIN JOB AND PUBLIC SAFETY.
- 5. ALL REINFORCED CONCRETE PIPE (RCP) SHALL BE MINIMUM CLASS III.

UTILITY NOTES

1. CONTRACTOR SHALL CONTACT TEXAS ONE-CALL OR APPROPRIATE UTILITY DISTRICT OR COMPANY AT LEAST 48 HOURS PRIOR TO COMMENCING CONSTRUCTION ACTIVITIES AFFECTING UNDERGROUND UTILITIES.

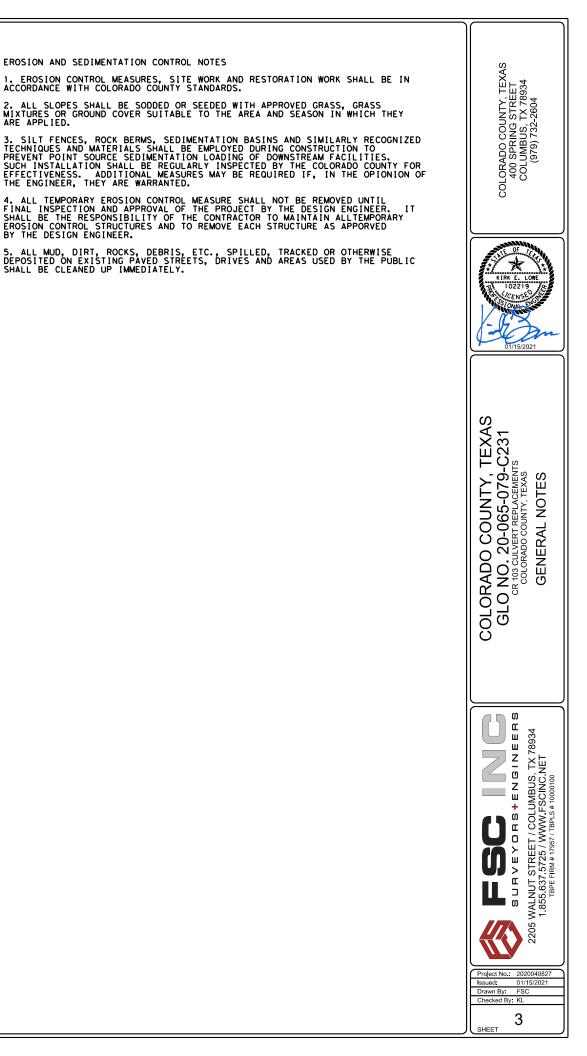
2. THE CONTRACTOR SHALL BE SOLEY RESPONSIBLE FOR TEMPORARY DRAINAGE DURING CONSTRUCTION. ANY OBSTRUCTION TO EXISTING DRAINAGE DUE TO THE CONTRACTOR'S OPERATIONS WILL BE REMOVED BY THE CONTRACTOR AS REQUIRED BY THE ENGINEER AT THE CONTRACTOR'S ENTIRE EXPENSE.

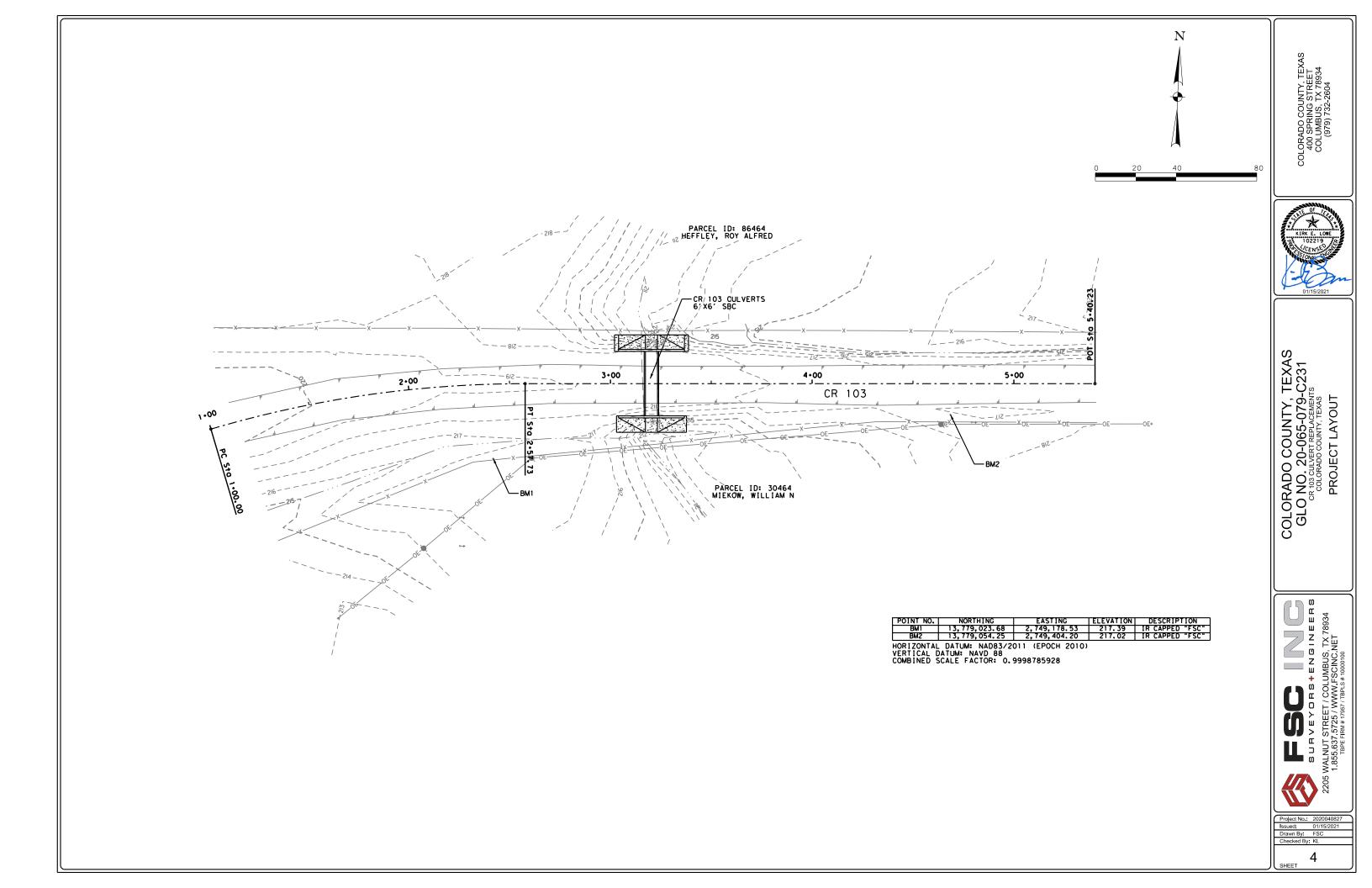
3. ALL AREAS DISTURBED OR EXPOSED DURING CONSTRUCTION SHALL BE RESTORED AND/OR REVEGETATED BY THE CONTRACTOR IN ACCORDANCE WITH THE PLANS AND SPECIFICATIONS AT NO ADDITIONAL COST TO THE OWNER AND GRADED TO DRAIN.

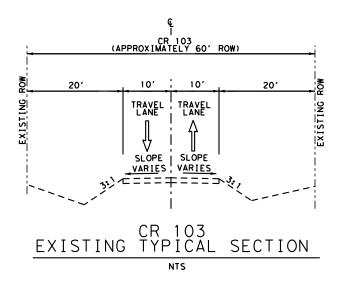
4. OVERALL TRENCH SAFETY WILL REMAIN THE RESPONSIBILITY OF THE CONTRACTOR AND SHALL BE IN ACCORDANCE WITH THE LAWS OF THE STATE OF TEXAS AND THE U.S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS.

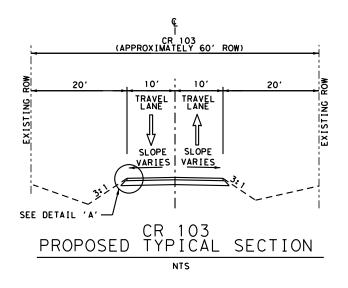
5. THE CONTRACTOR SHALL BACKFILL OR INSTALL AND MAINTAIN STEEL PLATES OVER ALL OPEN TRENCHES AS REQUIRED AT THE END OF EACH DAY OF CONSTRUCTION. THERE SHALL BE NO TRENCHES LEFT OPEN DURING NON-WORKING HOURS, WEEKENDS, OR HOLIDAYS UNLESS APPROVED BY THE OWNER. SHOULD THE STORAGE OF MATERIALS OR OPEN TRENCHING BE REQUIRED TO REMAIN UNSUPERVISED WITHIN THE WORK SPACE, THEN A STABLE STANDING CHAIN LINK FENCE AT LEAST SIX FEET IN HEIGHT SHALL BE INSTALLED ALONG THE PERIMETER OF THE STORAGE/WORK AREA, SUFFICIENT TO PROTECT AGAINST ACCESS BY CHILDREN, THE GENERAL PUBLIC AND OTHER THESPASSERS. OTHER TRESPASSERS.

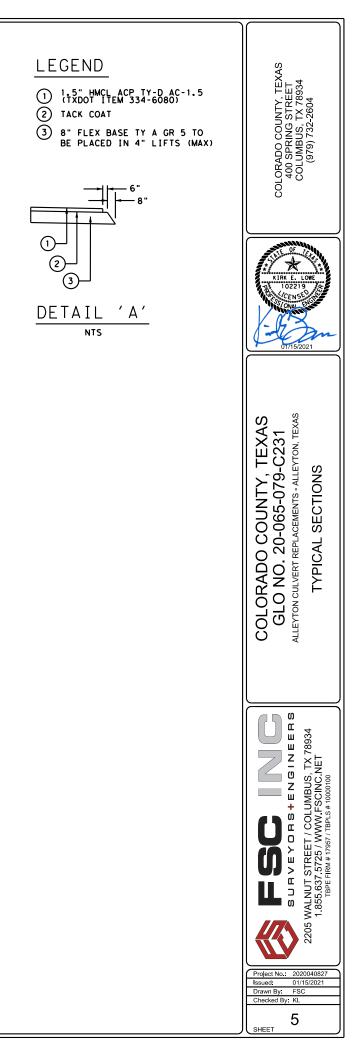
6. THE CONSTRACTOR SHALL PRESERVE AND PROTECT PUBLIC UTILITIES AT ALL TIMES DURING CONSTRUCTION. ANY DAMAGE TO UTILITIES RESULTING FROM THE CONTRACTOR'S OPERATION SHALL BE RESTORED AT THEIR ENTIRE EXPENSE.

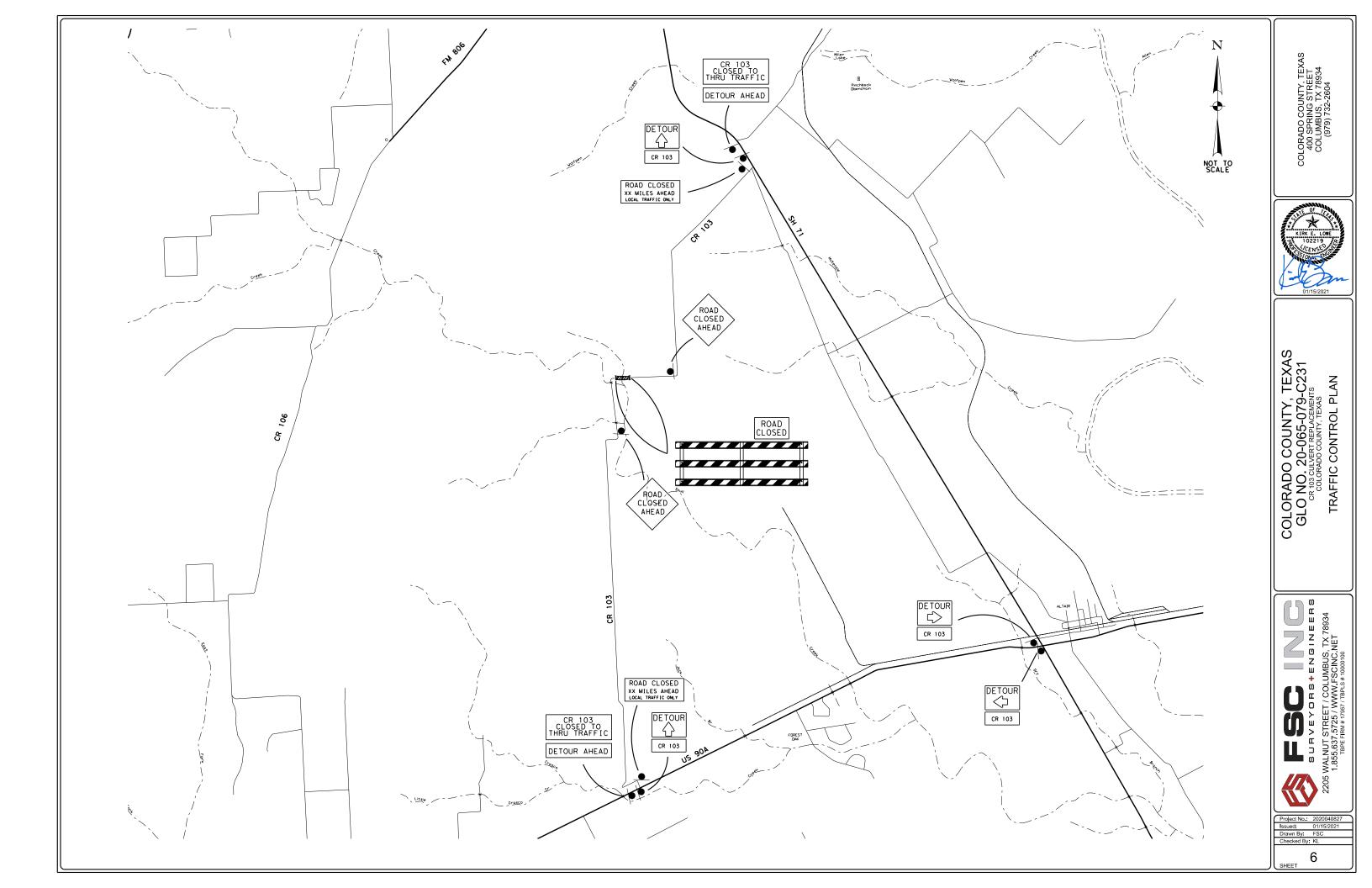

7. SANITARY SEWER PIPE AT WATER MAIN CROSSINGS SHALL BE IN ACCORDANCE WITH TCEQ REGULATIONS. NO SEPARATE PAY ITEMS.

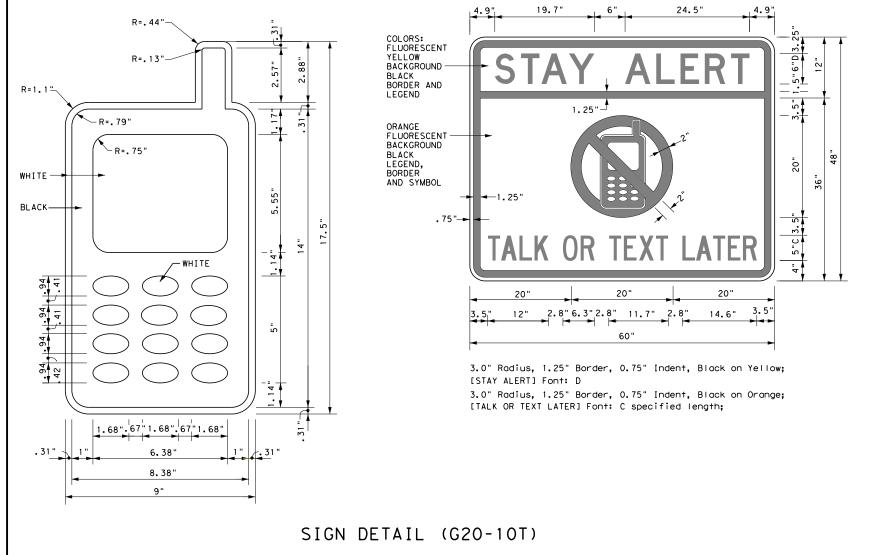

SEQUENCE OF CONSTRUCTION:


- 1. NO CLEARING OR ROUGH GRADING MAY BE DONE UNTIL THE APPROVED EROSION AND SEDIMENTATION CONTROLS ARE IN PLACE.
- 2. HOLD PRE-CONSTRUCTION CONFERENCE.
- 3. INSTALL TEMPORARY EROSION AND SEDIMENTATION CONTROLS AND STABILIZED CONSTRUCION ENTRANCE, IF REQUIRED BY THE APPROVED PLANS.
- INSTALL TRAFFIC CONTROL MEASURES PER CONSTRUCTION DRAWINGS. ANY ANY CHANGES TO THE PROPOSED TRAFFIC CONTROL MEASURES REQUIRE APPROVAL FROM THE ENGINEER.
- 5. ROUGH GRADE PAVED AREAS.
- 6. INSTALL AND/OR RELOCATE ALL UTILITIES IN RIGHTS-OF-WAY.
- 7. RE-GRADE AND COMPACT SUBGRADE. MEET WITH COUNTY INSPECTOR AND DESIGN ENGINEER TO DETERMINE AREAS OF DIFFERING STREET SECTION THICKNESS OR SUBGRADE PREPARATION IF REQUIRED.
- ENSURE ALL UNDERGROUND UTILITY CROSSINGS ARE IN PLACE INCLUDING STORM CULVERTS AND SLEEVES FOR DRY UTILITIES AND INSTALL SAND BASE.
- 9. INSTALL ASPALT PAVEMENT.
- 10.FINAL GRADE ANY DITCHES, ETC.
- 11. REVEGETATE ALL DISTURBED AREAS, DISPOSE OF SPOIL IN AN APPROVED MANNER.
- 12. SCHEDULE A FINAL INSPECTION WITH COUNTY.
- 13. AFTER ACCEPTANCE OF CONSTRUCTION, TEMPORARY EROSION CONTROLS MAY BE REMOVED.


EROSION AND SEDIMENTATION CONTROL NOTES


ARE APPLIED.



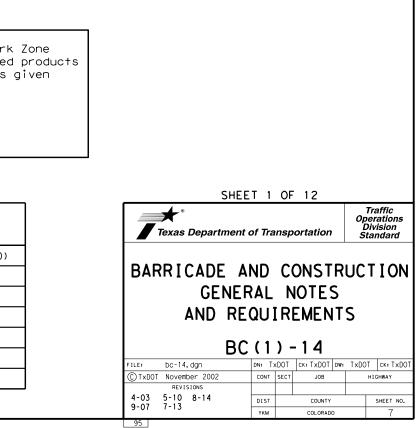


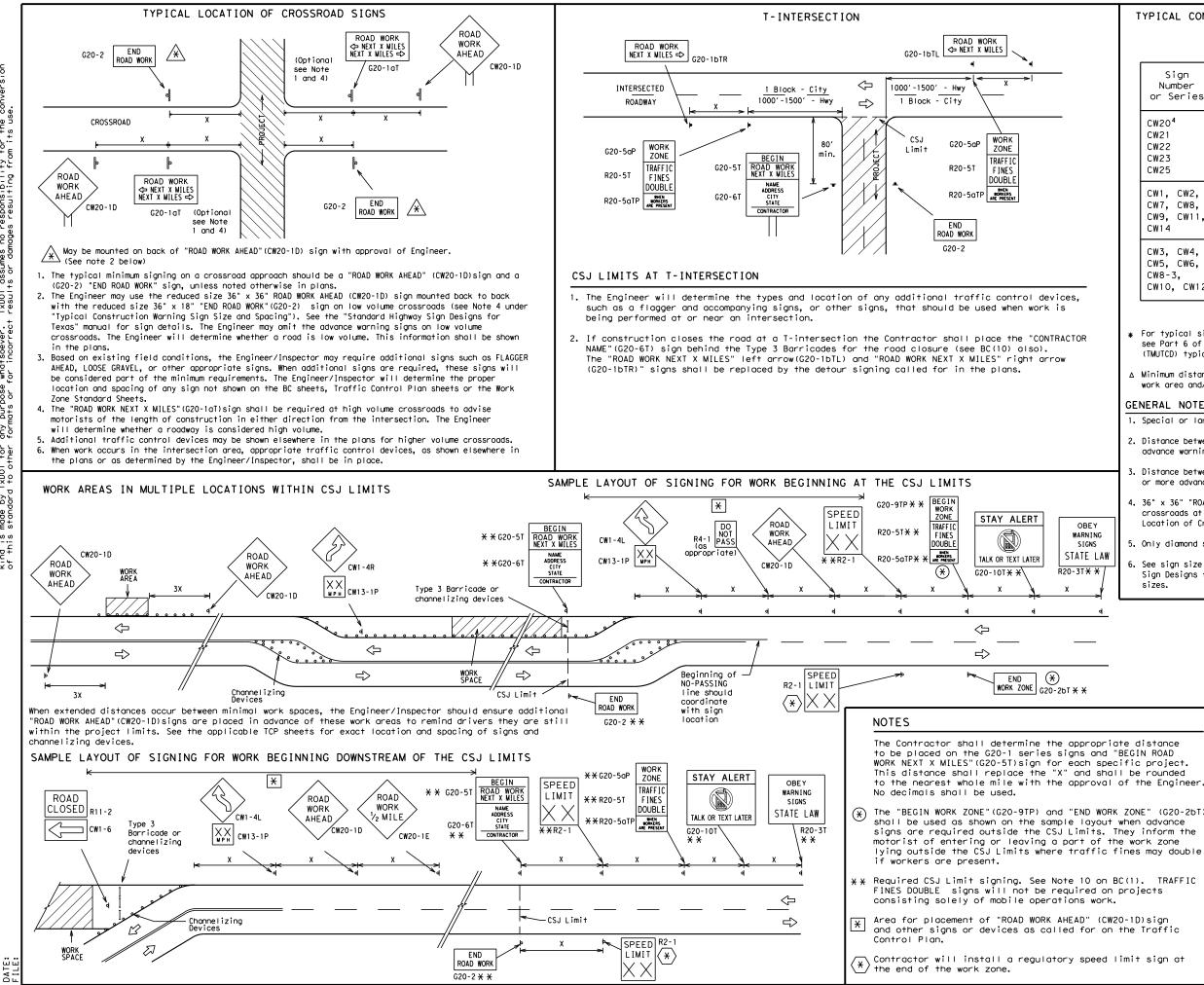
BARRICADE AND CONSTRUCTION (BC) STANDARD SHEETS GENERAL NOTES:

- 1. The Barricade and Construction Standard Sheets (BC sheets) are intended to show typical examples for placement of temporary traffic control devices, construction pavement markings, and typical work zone signs. The information contained in these sheets meet or exceed the requirements shown in the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- The development and design of the Traffic Control Plan (TCP) is the 2. responsibility of the Engineer.
- The Contractor may propose changes to the TCP that are signed and sealed 3. by a licensed professional engineer for approval. The Engineer may develop. sign and seal Contractor proposed changes.
- 4. The Contractor is responsible for installing and maintaining the traffic control devices as shown in the plans. The Contractor may not move or change the approximate location of any device without the approval of the Engineer.
- 5. Geometric design of lane shifts and detours should, when possible, meet the applicable design criteria contained in manuals such as the American Association of State Highway and Transportation Officials (AASHTO), "A Policy on Geometric Design of Highways and Streets," the TxDOT "Roadway Design Manual" or engineering judgment.
- When projects abut, the Engineer(s) may omit the END ROAD WORK, TRAFFIC FINES DOUBLE, and other advance warning signs if the signing would be redundant and the work areas appear continuous to the motorists. If the adjacent project is completed first, the Contractor shall erect the necessary warning signs as shown on these sheets, the TCP sheets or as directed by the Engineer. The BEGIN ROAD WORK NEXT X MILES sign shall be revised to show appropriate work zone distance.
- The Engineer may require duplicate warning signs on the median side of divided highways where median width will permit and traffic volumes justify the signing.
- 8. All signs shall be constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition. Sign details not shown in this manual shall be shown in the plans or the Engineer shall provide a detail to the Contractor before the sign is manufactured.
- The temporary traffic control devices shown in the illustrations of the 9. BC sheets are examples. As necessary, the Engineer will determine the most appropriate traffic control devices to be used.
- 10. As shown on BC(2), the OBEY WARNING SIGNS STATE LAW sign, STAY ALERT TALK OR TEXT LATER (see Sign Detail G20-10T) and the WORK ZONE TRAFFIC FINES DOUBLE sign with plaque shall be erected in advance of the CSJ limits. However, the TRAFFIC FINES DOUBLE sign will not be required on projects consisting solely of mobile operation work, such as striping or milling edgeline rumble strips. The BEGIN ROAD WORK NEXT X MILES, CONTRACTOR and END ROAD WORK signs shall be erected at or near the CSJ limits.
- 11. Except for devices required by Note 10, traffic control devices should be in place only while work is actually in progress or a definite need exists.
- 12. The Engineer has the final decision on the location of all traffic control devices.
- 13. Inactive equipment and work vehicles, including workers' private vehicles must be parked away from travel lanes. They should be as close to the right-of-way line as possible, or located behind a barrier or guardrail, or as approved by the Engineer.

WORKER SAFETY APPAREL NOTES:

1. Workers on foot who are exposed to traffic or to construction equipment within the right-of-way shall wear high-visibility safety apparel meeting the requirements of ISEA "American National Standard for High-Visibility Apparel," or equivalent revisions, and labeled as ANSI 107-2004 standard performance for Class 2 or 3 risk exposure. Class 3 garments should be considered for high traffic volume work areas or night time work.




Only pre-qualified products shall be used. The "Compliant Work Zone Traffic Control Devices List" (CWZTCD) describes pre-qualified products and their sources and may be found on-line at the web address given below or by contacting:

Texas Department of Transportation Traffic Operations Division - TE Phone (512) 416-3118

THE DOCUMENTS BELOW CAN BE FOUND ON-LINE AT http://www.txdot.gov
COMPLIANT WORK ZONE TRAFFIC CONTROL DEVICES LIST (CWZTCD
DEPARTMENTAL MATERIAL SPECIFICATIONS (DMS)
MATERIAL PRODUCER LIST (MPL)
ROADWAY DESIGN MANUAL - SEE "MANUALS (ONLINE MANUALS)"
STANDARD HIGHWAY SIGN DESIGNS FOR TEXAS (SHSD)
TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (TMUTCD)
TRAFFIC ENGINEERING STANDARD SHEETS

DATE:

TYPICAL CONSTRUCTION WARNING SIGN SIZE AND SPACING 15.6

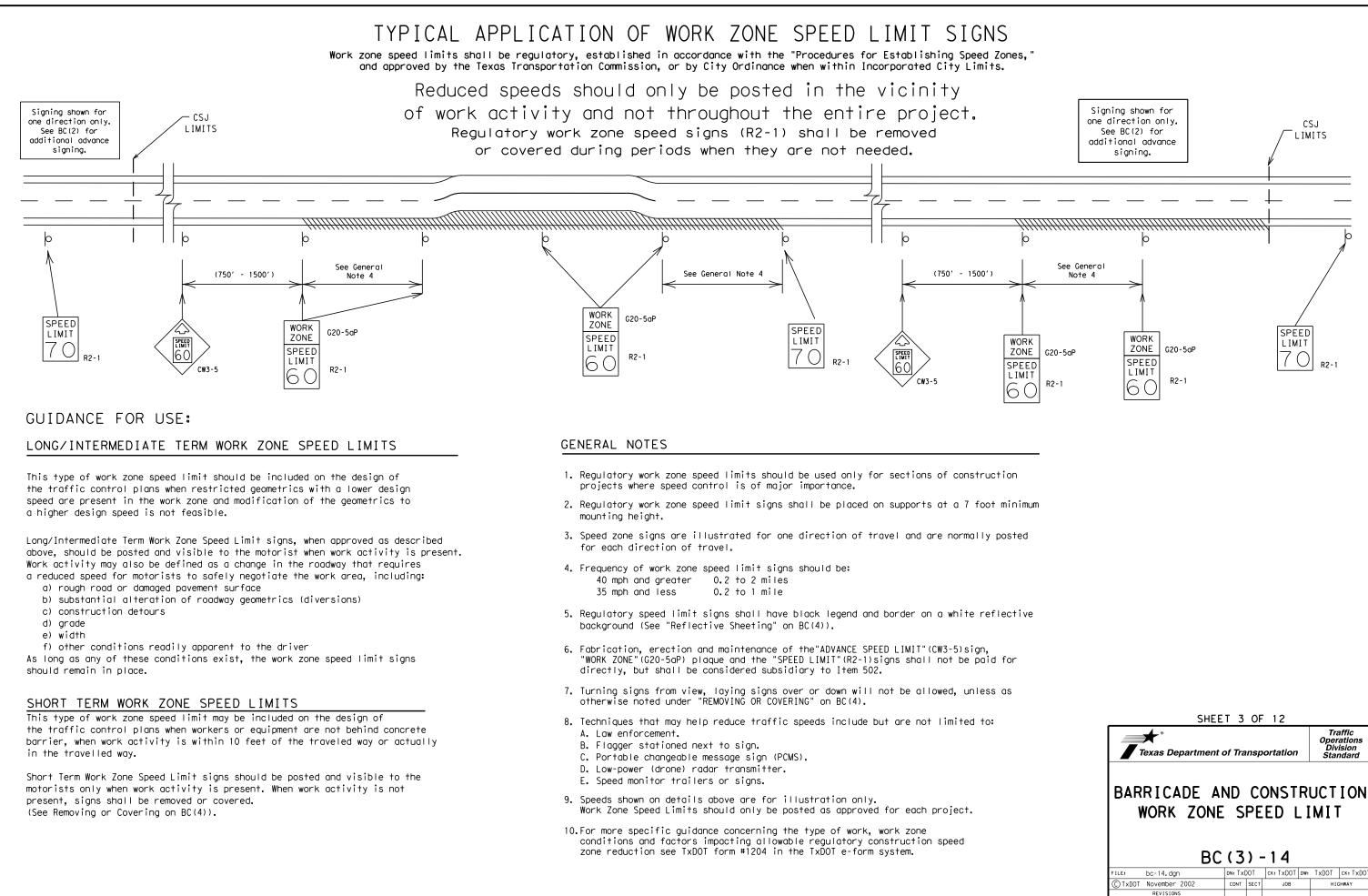
SIZE

Sign Number or Series	Conventional Road	Expressway/ Freeway
CW20 ⁴ CW21 CW22 CW23 CW25	48" x 48"	48" × 48"
CW1, CW2, CW7, CW8, CW9, CW11, CW14	36" × 36"	48" × 48"
CW3, CW4, CW5, CW6, CW8-3, CW10, CW12	48" × 48"	48" × 48"

	CINO
Posted Speed	Sign ^A Spacing "X"
МРН	Feet (Apprx.)
30	120
35	160
40	240
45	320
50	400
55	500 ²
60	600 ²
65	700 ²
70	800 ²
75	900 ²
80	1000 ²
*	* 3

SPACING

* For typical sign spacings on divided highways, expressways and freeways, see Part 6 of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) typical application diagrams or TCP Standard Sheets.


△ Minimum distance from work area to first Advance Warning sign nearest the work area and/or distance between each additional sign.

GENERAL NOTES

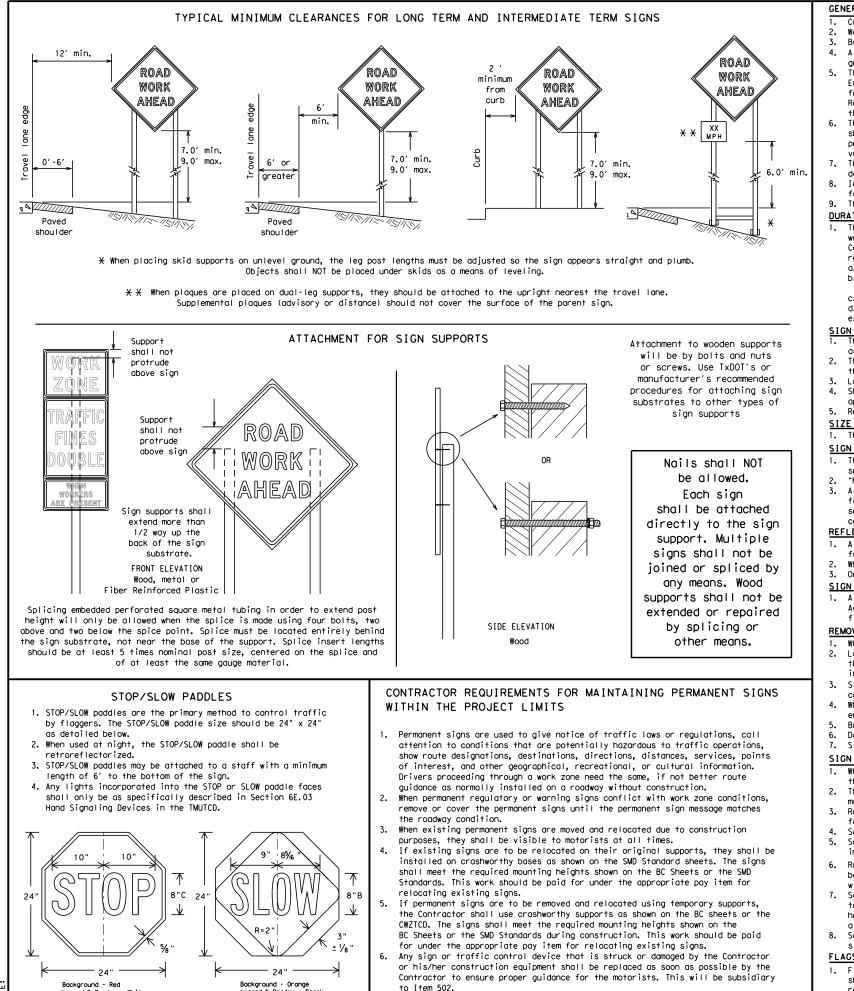
- 1. Special or larger size signs may be used as necessary.
- 2. Distance between signs should be increased as required to have 1500 feet advance warning.
- 3. Distance between signs should be increased as required to have 1/2 mile or more advance warning.
- 4. 36" x 36" "ROAD WORK AHEAD" (CW20-1D)signs may be used on low volume crossroads at the discretion of the Engineer. See Note 2 under "Typical Location of Crossroad Signs".
- 5. Only diamond shaped warning sign sizes are indicated.
- 6. See sign size listing in "TMUTCD", Sign Appendix or the "Standard Highway Sign Designs for Texas" manual for complete list of available sign design sizes.

		BC	(2) -	14			
FILE:	bc-14.dgn		DN: T:	×DOT	ск: TxDOT	DW:	T×DOT	ск: TxDOT
© ⊺xDOT	November 2002		CONT	SECT	JOB		нI	GHWAY
	REVISIONS							
9-07	8-14		DIST		COUNTY			SHEET NO.
7-13			YKM		COLORAD	0		8
96								

7-13 97

9-07 8-14

DIST


үкм

COUNT

COLORADO

SHEET NO.

Q

GENERAL NOTES FOR WORK ZONE SIGNS

- Wooden sign posts shall be painted white.
- Barricades shall NOT be used as sign supports.
- auide the traveling public safely through the work zone.
- verify the correct procedures are being followed.
- damaged or marred reflective sheeting as directed by the Engineer/Inspector.
- for identification shall be 1 inch.
- The Contractor shall replace damaged wood posts. New or damaged wood sign posts shall not be spliced.
- regard to crashworthiness and duration of work requirements.
- a. Long-term stationary work that occupies a location more than 3 days. b. more than one hour.
- Short-term stationary daytime work that occupies a location for more than 1 hour in a single daylight period.
- Short, duration work that occupies a location up to 1 hour. d.

SIGN MOUNTING HEIGHT

- as shown for supplemental plaques mounted below other signs. 2. The bottom of Short-term/Short Duration signs shall be a minimum of 1 foot above the pavement surface but no more than 2 feet above
- the around. Long-term/Intermediate-term Signs may be used in lieu of Short-term/Short Duration signing.
- appropriate Long-term/Intermediate sign height.
- SIZE OF SIGNS
- SIGN SUBSTRATES
- centers. The Engineer may approve other methods of splicing the sign face. REFLECTIVE SHEETING

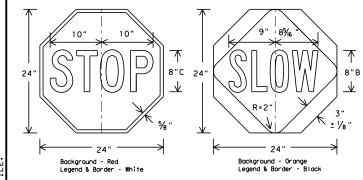
- for rigid signs or DMS-8310 for roll-up signs. The web address for DMS specifications is shown on BC(1).
- White sheeting, meeting the requirements of DMS-8300 Type A, shall be used for signs with a white background. 3. Orange sheeting, meeting the requirements of DMS-8300 Type B_{FL} or Type C_{FL}, shall be used for rigid signs with orange backgrounds.

SIGN LETTERS

first class workmanship in accordance with Department Standards and Specifications.

REMOVING OR COVERING

- When sign messages may be confusing or do not apply, the signs shall be removed or completely covered.
- intersections where the sign may be seen from approaching traffic. Signs installed on wooden skids shall not be turned at 90 degree angles to the roadway. These signs should be removed or completely covered when not required,
- When signs are covered, the material used shall be opaque, such as heavy mil black plastic, or other materials which will cover the
- Burlap shall NOT be used to cover signs.
- Duct tape or other adhesive material shall NOT be affixed to a sign face.


SIGN SUPPORT WEIGHTS

- 1. Where sign supports require the use of weights to keep from turning over, the use of sandbags with dry, cohesionless sand should be used. The sandbaas will be tied shut to keep the sand from spilling and to
- maintain a constant weight.
- Rock, concrete, iron, steel or other solid objects shall not be permitted for use as sign support weights.
- Sandbags should weigh a minimum of 35 lbs and a maximum of 50 lbs. Sandbags shall be made of a durable material that tears upon vehicular impact, Rubber (such as tire inner tubes) shall NOT be used.
- Rubber ballasts designed for channelizing devices should not be used for ballast on portable sign supports. Sign supports designed and manufactured with rubber bases may be used when shown on the CWZTCD list.
- Sandbags shall only be placed along or laid over the base supports of the traffic control device and shall not be suspended above ground level or hung with rope, wire, chains or other fasteners. Sandbags shall be placed along the length of the skids to weigh down the sign support.
- Sandbaas shall NOT be placed under the skid and shall not be used to level sign supports placed on slopes.

FLAGS ON SIGNS

Flags may be used to draw attention to warning signs. When used the flag shall be 16 inches square or larger and shall be orange or fluorescent red-orange in color. Flags shall not be allowed to cover any portion of the sign face.

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDDT for any purpose whatsever. TxDDT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

to Item 502.

Contractor shall install and maintain signs in a straight and plumb condition and/or as directed by the Engineer.

All signs shall be installed in accordance with the plans or as directed by the Engineer. Signs shall be used to regulate, warn, and

The Contractor may furnish either the sign design shown in the plans or in the "Standard Highway Sign Designs for Texas" (SHSD). The Engineer/Inspector may require the Contractor to furnish other work zone signs that are shown in the TMUTCD but may have been omitted from the plans. Any variation in the plans shall be documented by written agreement between the Engineer and the Contractor's Responsible Person. All changes must be documented in writing before being implemented. This can include documenting the changes in the Inspector's TxDOT diary and having both the Inspector and Contractor initial and date the agreed upon changes.

The Contractor shall furnish sign supports listed in the "Compliant Work Zone Traffic Control Device List" (CWZTCD). The Contractor shall install the sign support in accordance with the manufacturer's recommendations. If there is a question regarding installation procedures, the Contractor shall furnish the Engineer a copy of the manufacturer's installation recommendations so the Engineer can

The Contractor is responsible for installing signs on approved supports and replacing signs with damaged or cracked substrates and/or

Identification markings may be shown only on the back of the sign substrate. The maximum height of letters and/or company logos used

DURATION OF WORK (as defined by the "Texas Manual on Uniform Traffic Control Devices" Part 6)

The types of sign supports, sign mounting height, the size of signs, and the type of sign substrates can vary based on the type of work being performed. The Engineer is responsible for selecting the appropriate size sign for the type of work being performed. The Contractor is responsible for ensuring the sign support, sign mounting height and substrate meets monufacturer's recommendations in

Intermediate-term stationary - work that occupies a location more than one daylight period up to 3 days, or nighttime work lasting

Mobile - work that moves continuously or intermittently (stopping for up to approximately 15 minutes.)

The bottom of Long-term/Intermediate-term signs shall be at least 7 feet, but not more than 9 feet, above the paved surface, except

Short-term/Short Duration signs shall be used only during daylight and shall be removed at the end of the workday or raised to

Regulatory signs shall be mounted at least 7 feet, but not more than 9 feet, above the paved surface regardless of work duration.

1. The Contractor shall furnish the sign sizes shown on BC (2) unless otherwise shown in the plans or as directed by the Engineer.

1. The Contractor shall ensure the sign substrate is installed in accordance with the manufacturer's recommendations for the type of sign support that is being used. The CWZTCD lists each substrate that can be used on the different types and models of sign supports. "Mesh" type materials are NOT an approved sign substrate, regardless of the tightness of the weave. All wooden individual sign panels fabricated from 2 or more pieces shall have one or more plywood cleat, 1/2" thick by 6" wide, fastened to the back of the sign and extending fully across the sign. The cleat shall be attached to the back of the sign using wood screws that do not penetrate the face of the sign panel. The screws shall be placed on both sides of the splice and spaced at 6"

All signs shall be retroreflective and constructed of sheeting meeting the color and retro-reflectivity requirements of DMS-8300

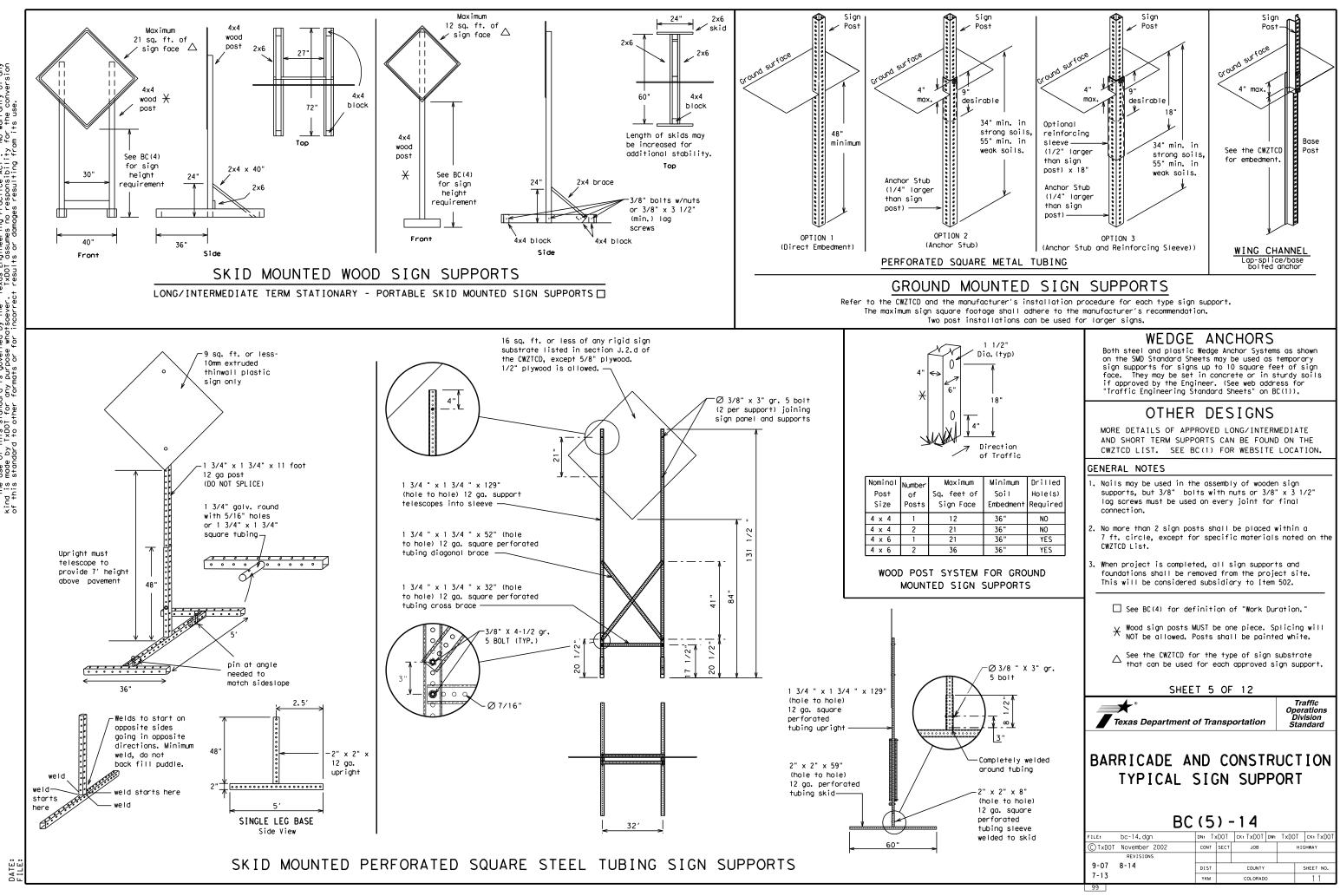
1. All sign letters and numbers shall be clear, and open rounded type uppercase alphabet letters as approved by the Federal Highway Administration (FHWA) and as published in the "Standard Highway Sign Design for Texas" manual. Signs, letters and numbers shall be of

Long-term stationary or intermediate stationary signs installed on square metal tubing may be turned away from traffic 90 degrees when the sign message is not applicable. This technique may not be used for signs installed in the median of divided highways or near any

entire sign face and maintain their opaque properties under automobile headlights at night, without damaging the sign sheeting.

Signs and anchor stubs shall be removed and holes backfilled upon completion of work.

98


SHEET 4 OF 12

Texas Department of Transportation

Traffic Operation Division Standard

BARRICADE AND CONSTRUCTION TEMPORARY SIGN NOTES

		BC	(4) -	-14				
LE:	bc-14.dgn		dn: T:	×DOT	ск: TxDOT	DW:	TxDC	T	ск: TxDOT
) txdot	November 2002		CONT SECT JOB HIGHWAY				HWAY		
	REVISIONS								
9-07	8-14		DIST		COUNTY			;	SHEET NO.
7-13			YKM		COLORAD	c			10

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDD1 for any purpose whatsoever. TXDD1 assumes no responsibility for the conversion of this standard to other formats or for incortect results or damages resulting fram its use.

PORTABLE CHANGEABLE MESSAGE SIGNS

- 1. The Engineer/Inspector shall approve all messages used on portable changeable message signs (PCMS).
- Messages on PCMS should contain no more than 8 words (about four to 2. eight characters per word), not including simple words such as "TO," "FOR." "AT." etc.
- Messages should consist of a single phase, or two phases that 3. alternate. Three-phase messages are not allowed. Each phase of the message should convey a single thought, and must be understood by itself.
- 4. Use the word "EXIT" to refer to an exit ramp on a freeway; i.e., "EXIT CLOSED." Do not use the term "RAMP."
- Always use the route or interstate designation (IH, US, SH, FM) along with the number when referring to a roadway.
- When in use the bottom of a stationary PCMS message panel should be a minimum 7 feet above the roadway, where possible.
- The message term "WEEKEND" should be used only if the work is to 7. start on Saturday morning and end by Sunday evening at midnight. Actual days and hours of work should be displayed on the PCMS if work is to begin on Friday evening and/or continue into Monday morning.
- The Engineer/Inspector may select one of two options which are available for displaying a two-phase message on a PCMS. Each phase may be displayed for either four seconds each or for three seconds each.
- Do not "flash" messages or words included in a message. The message should be steady burn or continuous while displayed.
- 10. Do not present redundant information on a two-phase message; i.e., keeping two lines of the message the same and changing the third line.
- Do not use the word "Danger" in message.
 Do not display the message "LANES SHIFT LEFT" or "LANES SHIFT RIGHT" on a PCMS. Drivers do not understand the message.
- 13. Do not display messages that scroll horizontally or vertically across the face of the sign.
- 14. The following table lists abbreviated words and two-word phrases that are acceptable for use on a PCMS. Both words in a phrase must be displayed together. Words or phrases not on this list should not be abbreviated, unless shown in the TMUTCD.
- 15. PCMS character height should be at least 18 inches for trailer mounted units. They should be visible from at least 1/2 (.5) mile and the text should be legible from at least 600 feet at night and 800 feet in daylight. Truck mounted units must have a character height of 10 inches and must be legible from at least 400 feet.
- 16. Each line of text should be centered on the message board rather than left or right justified.
- 17. If disabled, the PCMS should default to an illegible display that will not alarm motorists and will only be used to alert workers that the PCMS has malfunctioned. A pattern such as a series of horizontal solid bars is appropriate.

WORD OR PHRASE	ABBREVIATION	WORD OR PHRASE	ABBREVIATION
Access Road	ACCS RD	Major	MAJ
Alternate	ALT	Miles	MI
Avenue	AVE	Miles Per Hour	MPH
Best Route	BEST RTE	Minor	MNR
Boulevard	BLVD	Monday	MON
Bridge	BRDG	Normal	NORM
Cannot	CANT	North	N
Center	CTR	Northbound	(route) N
Construction Ahead	CONST AHD	Parking	PKING
	XING	Road	RD
	DETOUR RTE	Right Lane	RT LN
Detour Route	DETOUR RTE	Saturday	SAT
Do Not	E	Service Road	SERV RD
East		Shoulder	SHLDR
Eastbound	(route) E	Slippery	SLIP
Emergency	EMER	South	S
Emergency Vehicle	EMER VEH	Southbound	(route) S
Entrance, Enter	ENT	Speed	SPD
Express Lane	EXP LN	Street	ST
Expressway	EXPWY	Sunday	SUN
XXXX Feet	XXXX FT	Telephone	PHONE
Fog Ahead	FOG AHD	Temporary	TEMP
Freeway	FRWY, FWY	Thursday	THURS
Freeway Blocked	FWY BLKD	To Downtown	TO DWNTN
Friday	FRI	Traffic	TRAF
Hazardous Driving		Travelers	TRVLRS
Hazardous Material		Tuesday	TUES
High-Occupancy	нои	Time Minutes	TIME MIN
Vehicle	HWY	Upper Level	UPR LEVEL
Highway		Vehicles (s)	VEH, VEHS
Hour (s)	HR, HRS	Warning	WARN
Information	INFO	Wednesday	WED
It Is	ITS	Weight Limit	WTLIMIT
Junction	JCT	West	W
Lef†	LFT	Westbound	(route) W
Left Lane	LFT LN	Wet Pavement	WET PVMT
Lane Closed	LN CLOSED	Will Not	WONT
Lower Level	LWR LEVEL		
Maintenance	MAINT		

RECOMMENDED PHASES AND FORMATS FOR PCMS MESSAGES DURING ROADWORK ACTIVITIES

(The Engineer may approve other messages not specifically covered here.)

Phase 1: Condition Lists

Road/Lane/Ramp Closure List

		0111
FREEWAY CLOSED X MILE	FRONTAGE ROAD CLOSED	ROADW XXX
ROAD CLOSED AT SH XXX	SHOULDER CLOSED XXX FT	FLAGO XXXX
ROAD CLSD AT FM XXXX	RIGHT LN CLOSED XXX FT	RIGHT NARRO XXXX
RIGHT X LANES CLOSED	RIGHT X LANES OPEN	MERG TRAFF XXXX
CENTER LANE CLOSED	DAYTIME LANE CLOSURES	LOOS GRAV XXXX
NIGHT LANE CLOSURES	I-XX SOUTH EXIT CLOSED	DETO X MI
VARIOUS LANES CLOSED	EXIT XXX CLOSED X MILE	ROADW PAS SH XX
EXIT CLOSED	RIGHT LN TO BE CLOSED	BUM
MALL DRIVEWAY CLOSED	X LANES CLOSED TUE - FRI	TRAFF SIGN XXXX
XXXXXXXX BLVD CLOSED	¥ LANES SHIFT in Phase	e 1 must be

Other Co	ndition List
ROADWORK XXX FT	ROAD REPAIRS XXXX FT
FLAGGER XXXX FT	LANE NARROWS XXXX FT
RIGHT LN NARROWS XXXX FT	TWO-WAY TRAFFIC XX MILE
MERGING TRAFFIC XXXX FT	CONST TRAFFIC XXX FT
LOOSE GRAVEL XXXX FT	UNEVEN LANES XXXX FT
DETOUR X MILE	ROUGH ROAD XXXX FT
ROADWORK PAST SH XXXX	ROADWORK NEXT FRI-SUN
BUMP XXXX FT	US XXX EXIT X MILES
TRAFFIC SIGNAL XXXX FT	L ANE S SHIFT

used with STAY IN LANE in Phase 2.

APPLICATION GUIDELINES

1. Only 1 or 2 phases are to be used on a PCMS.

- 2. The 1st phase (or both) should be selected from the "Road/Lane/Ramp Closure List" and the "Other Condition List".
- 3. A 2nd phase can be selected from the "Action to Take/Effect on Travel, Location, General Warning, or Advance Notice Phase Lists".
- 4. A Location Phase is necessary only if a distance or location is not included in the first phase selected.
- 5. If two PCMS are used in sequence, they must be separated by a minimum of 1000 ft. Each PCMS shall be limited to two phases, and should be understandable by themselves.
- 6. For advance notice, when the current date is within seven days of the actual work date, calendar days should be replaced with days of the week. Advance notification should typically be for no more than one week prior to the work.

WORDING ALTERNATIVES

- 1. The words RIGHT, LEFT and ALL can be interchanged as appropriate.
 - appropriate.

Action to Take/Effect on Travel

List

FORM

X LINES

RIGHT

USE

XXXXX

RD EXIT

USE EXIT

I-XX

NORTH

USE

I-XX F

TO I-XX N

WATCH

FOR

TRUCKS

EXPECT

DELAYS

PREPARE

ΤO

STOP

END

SHOULDER

USE

WATCH

FOR

WORKERS

MERGE

RIGHT

DETOUR

NEXT

X EXITS

USE

EXIT XXX

STAY ON

US XXX

SOUTH

TRUCKS

USF

US XXX N

WATCH

FOR

TRUCKS

EXPECT

DELAYS

REDUCE

SPEED

XXX FT

USE

OTHER

ROUTES

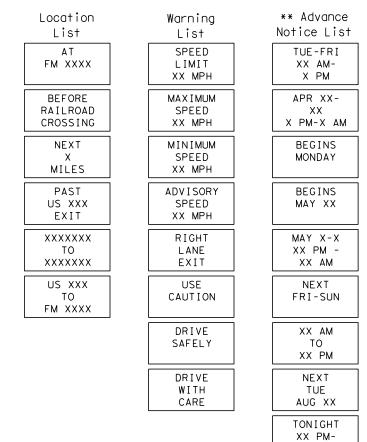
STAY ΤN

LANE

¥

- EAST, WEST, NORTH and SOUTH (or abbreviations E, W, N and S) can be interchanged as appropriate.
- 4. Highway names and numbers replaced as appropriate.
- ROAD, HIGHWAY and FREEWAY can be interchanged as needed.
- 6. AHEAD may be used instead of distances if necessary. 7. FT and MI. MILE and MILES interchanged as appropriate.
- 8. AT. BEFORE and PAST interchanged as needed.
- 9. Distances or AHEAD can be eliminated from the message if a
- location phase is used.

PCMS SIGNS WITHIN THE R.O.W. SHALL BE BEHIND GUARDRAIL OR CONCRETE BARRIER OR SHALL HAVE A MINIMUM OF FOUR (4) PLASTIC DRUMS PLACED PERPENDICULAR TO TRAFFIC ON THE UPSTREAM SIDE OF THE PCMS, WHEN EXPOSED TO ONE DIRECTION OF TRAFFIC. WHEN EXPOSED TO TWO WAY TRAFFIC. THE FOUR DRUMS SHOULD BE PLACED WITH ONE DRUM AT EACH OF THE FOUR CORNERS OF THE UNIT.

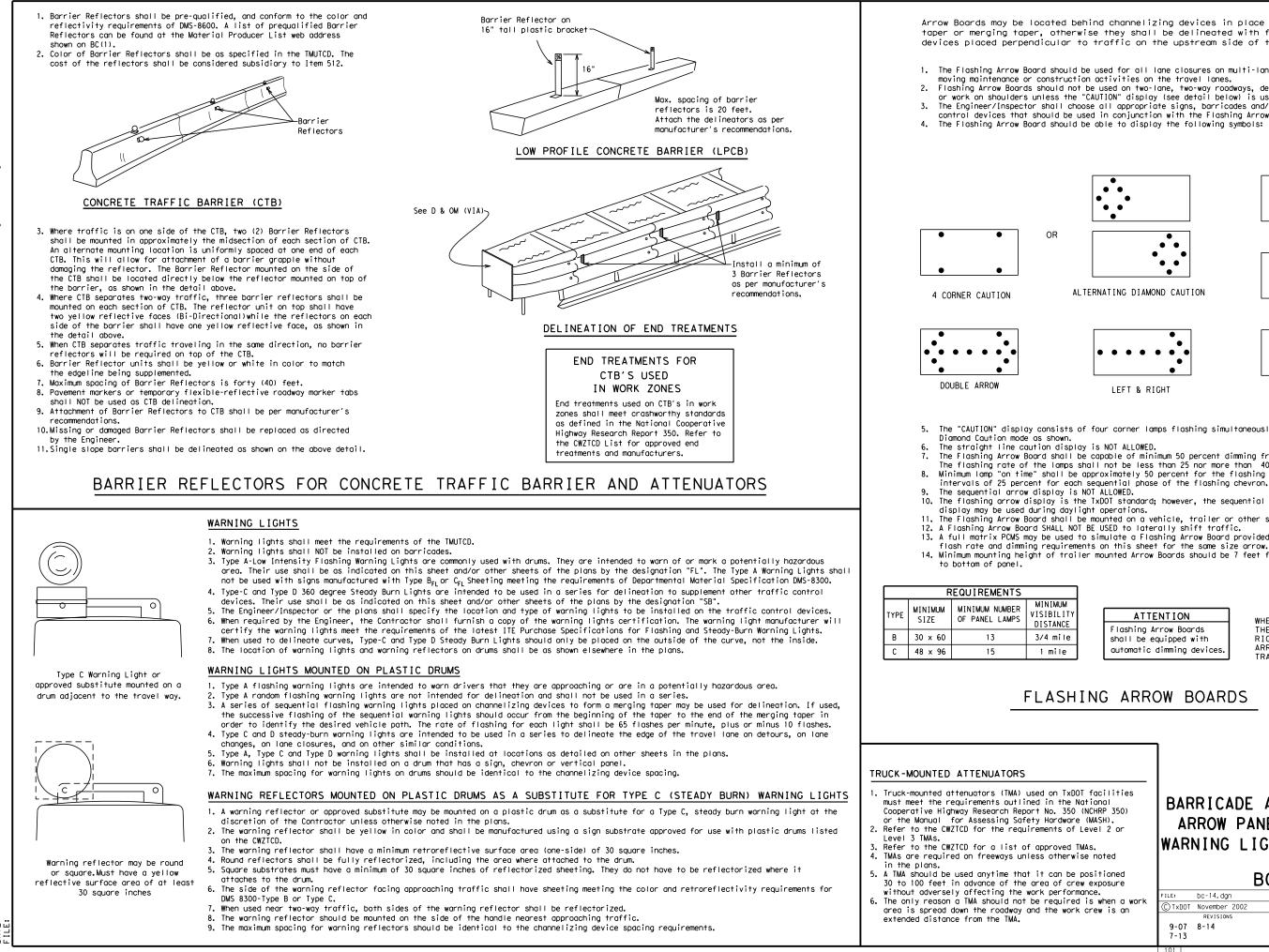

FULL MATRIX PCMS SIGNS

- 1. When Full Matrix PCMS signs are used, the character height and legibility/visibility requirements shall be maintained as listed in Note 15 un CHANGEABLE MESSAGE SIGNS" above.
- 2. When symbol signs, such as the "Flagger Symbol" (CW20-7) are represented graphically on the Full Matrix PCMS sign and, with the approval of t shall maintain the legibility/visibility requirement listed above
- 3. When symbol signs are represented graphically on the Full Matrix PCMS, they shall only supplement the use of the static sign represented, and for, or replace that sian.
- 4. A full matrix PCMS may be used to simulate a flashing arrow board provided it meets the visibility, flash rate and dimming requirements on BC same size arrow.

Roadway

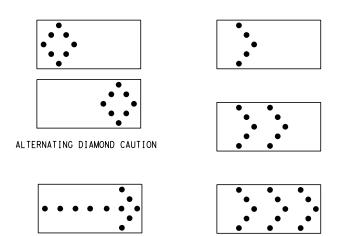
designation # IH-number, US-number, SH-number, FM-number

Phase 2: Possible Component Lists



X X See Application Guidelines Note 6.

XX AM


2. Roadway designations IH, US, SH, FM and LP can be interchanged as

		SHE	ET 6	OF	12		
		★ ® Texas Departmen	t of Tra	nsp	ortation	Ope Di	raffic rations vision andard
	BAR	RICADE A PORTABLI MESSAGE	E CI	HA	NGEAB	LE	ION
nder "PORTABLE							
the Engineer, it		BC	C (6) -	-14		
J	FILE:	bc-14,dgn	dn: T;	×D0T	ск: TxDOT Dw:	TxDOT	ск: TxDOT
d shall not substitute	© TxDOT	November 2002	CONT	SECT	JOB	н	IGHWAY
		REVISIONS					
C(7), for the	9-07	8-14	DIST		COUNTY		SHEET NO.
	7-13		YKM		COLORADO		12
	100						

Arrow Boards may be located behind channelizing devices in place for a shoulder taper or merging taper, otherwise they shall be delineated with four (4) channelizing devices placed perpendicular to traffic on the upstream side of traffic.

1. The Flashing Arrow Board should be used for all lane closures on multi-lane roadways, or slow moving maintenance or construction activities on the travel lanes. 2. Flashing Arrow Boards should not be used on two-lane, two-way roadways, detours, diversions or work on shoulders unless the "CAUTION" display (sée detail below) is used. 3. The Engineer/Inspector shall choose all appropriate signs, barricades and/or other traffic control devices that should be used in conjunction with the Flashing Arrow Board. 4. The Flashing Arrow Board should be able to display the following symbols:

LEFT & RIGHT

CHEVRON ARROW LEFT & RIGHT

5. The "CAUTION" display consists of four corner lamps flashing simultaneously, or the Alternating

The Flashing Arrow Board shall be capable of minimum 50 percent dimming from rated lamp voltage. The flashing rate of the lamps shall not be less than 25 nor more than 40 flashes per minute. 8. Minimum lamp "on time" shall be approximately 50 percent for the flashing arrow and equal intervals of 25 percent for each sequential phase of the flashing chevron.

9. The sequential arrow display is NOT ALLOWED. 10. The flashing arrow display is the TxDOT standard; however, the sequential Chevron

The Flashing Arrow Board shall be mounted on a vehicle, trailer or other suitable support.
 A Flashing Arrow Board SHALL NOT BE USED to laterally shift traffic.
 A full matrix PCMS may be used to simulate a Flashing Arrow Board provided it meets visibility,

14. Minimum mounting height of trailer mounted Arrow Boards should be 7 feet from roadway

MINIMUM VISIBILIT DISTANCE 3/4 mile 1 mile

ATTENTION Flashing Arrow Boards shall be equipped with automatic dimming devices.

WHEN NOT IN USE, REMOVE THE ARROW BOARD FROM THE RIGHT-OF-WAY OR PLACE THE ARROW BOARD BEHIND CONCRETE TRAFFIC BARRIER OR GUARDRAIL.

FLASHING ARROW BOARDS

on TxDOT facilities n the National lo. 350 (NCHRP 350) lardware (MASH). nts of Level 2 or
roved TMAs.

BARRICADE AND CONSTRUCTION ARROW PANEL, REFLECTORS, WARNING LIGHTS & ATTENUATOR

BC(7)-14

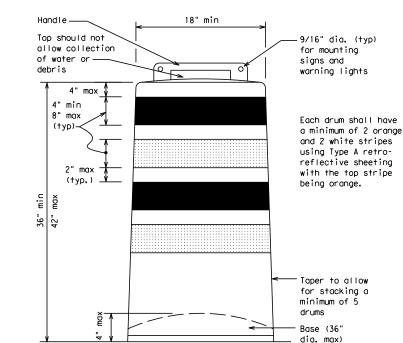
FILE:	bc-14.dgn	DN: T;	<dot< td=""><td>CK: TXDOT D</td><td>w: TxDC</td><td>)T CK: TxDO</td></dot<>	CK: TXDOT D	w: TxDC)T CK: TxDO
© TxDOT	November 2002	CONT	SECT	JOB		HIGHWAY
	REVISIONS					
9-07	8-14	DIST		COUNTY		SHEET NO.
7-13		YKM		COLORADO		13
101						

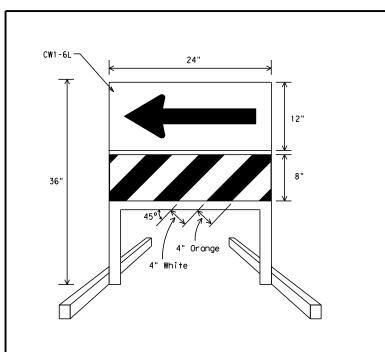
GENERAL NOTES

- 1. For long term stationary work zones on freeways, drums shall be used as the primary channelizing device.
- 2. For intermediate term stationary work zones on freeways, drums should be used as the primary channelizing device but may be replaced in tangent sections by vertical panels, or 42" two-piece cones. In tangent sections one-piece cones may be used with the approval of the Engineer but only if personnel are present on the project at all times to maintain the cones in proper position and location.
- 3. For short term stationary work zones on freeways, drums are the preferred channelizing device but may be replaced in tapers, transitions and tangent sections by vertical panels, two-piece cones or one-piece cones as approved by the Engineer.
- 4. Drums and all related items shall comply with the requirements of the current version of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD).
- 5. Drums, bases, and related materials shall exhibit good workmanship and shall be free from objectionable marks or defects that would adversely affect their appearance or serviceability.
- The Contractor shall have a maximum of 24 hours to replace any plastic drums identified for replacement by the Engineer/Inspector. The replacement device must be an approved device.

GENERAL DESIGN REQUIREMENTS

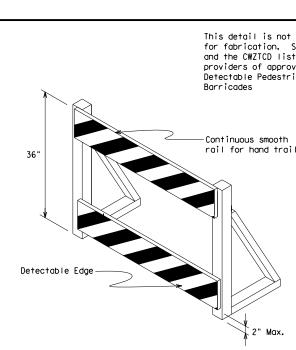
- Pre-qualified plastic drums shall meet the following requirements:
- 1. Plastic drums shall be a two-piece design; the "body" of the drum shall be the top portion and the "base" shall be the bottom.
- 2. The body and base shall lock together in such a manner that the body separates from the base when impacted by a vehicle traveling at a speed of 20 MPH or greater but prevents accidental separation due to normal handling and/or air turbulence created by passing vehicles.
- Plastic drums shall be constructed of lightweight flexible, and deformable materials. The Contractor shall NOT use metal drums or single piece plastic drums as channelization devices or sign supports.
- 4. Drums shall present a profile that is a minimum of 18 inches in width at the 36 inch height when viewed from any direction. The height of drum unit (body installed on base) shall be a minimum of 36 inches and a maximum of 42 inches.
- 5. The top of the drum shall have a built-in handle for easy pickup and shall be designed to drain water and not collect debris. The handle shall have a minimum of two widely spaced 9/16 inch diameter holes to allow attachment of a warning light, warning reflector unit or approved compliant sign.
- 6. The exterior of the drum body shall have a minimum of four alternating orange and white retroreflective circumferential stripes not less than 4 inches nor greater than 8 inches in width. Any non-reflectorized space between any two adjacent stripes shall not exceed 2 inches in width.
- Bases shall have a maximum width of 36 inches, a maximum height of 4 inches, and a minimum of two footholds of sufficient size to allow base to be held down while separating the drum body from the base.
- Plastic drums shall be constructed of ultra-violet stabilized, orange, high-density polyethylene (HDPE) or other approved material.
- 9. Drum body shall have a maximum unballasted weight of 11 lbs.
- 10. Drum and base shall be marked with manufacturer's name and model number.


RETROREFLECTIVE SHEETING


- The stripes used on drums shall be constructed of sheeting meeting the color and retroreflectivity requirements of Departmental Materials Specification DMS-8300, "Sign Face Materials," Type A reflective sheeting shall be supplied unless otherwise specified in the plans.
- 2. The sheeting shall be suitable for use on and shall adhere to the drum surface such that, upon vehicular impact, the sheeting shall remain adhered in-place and exhibit no delaminating, cracking, or loss of retroreflectivity other than that loss due to abrasion of the sheeting surface.

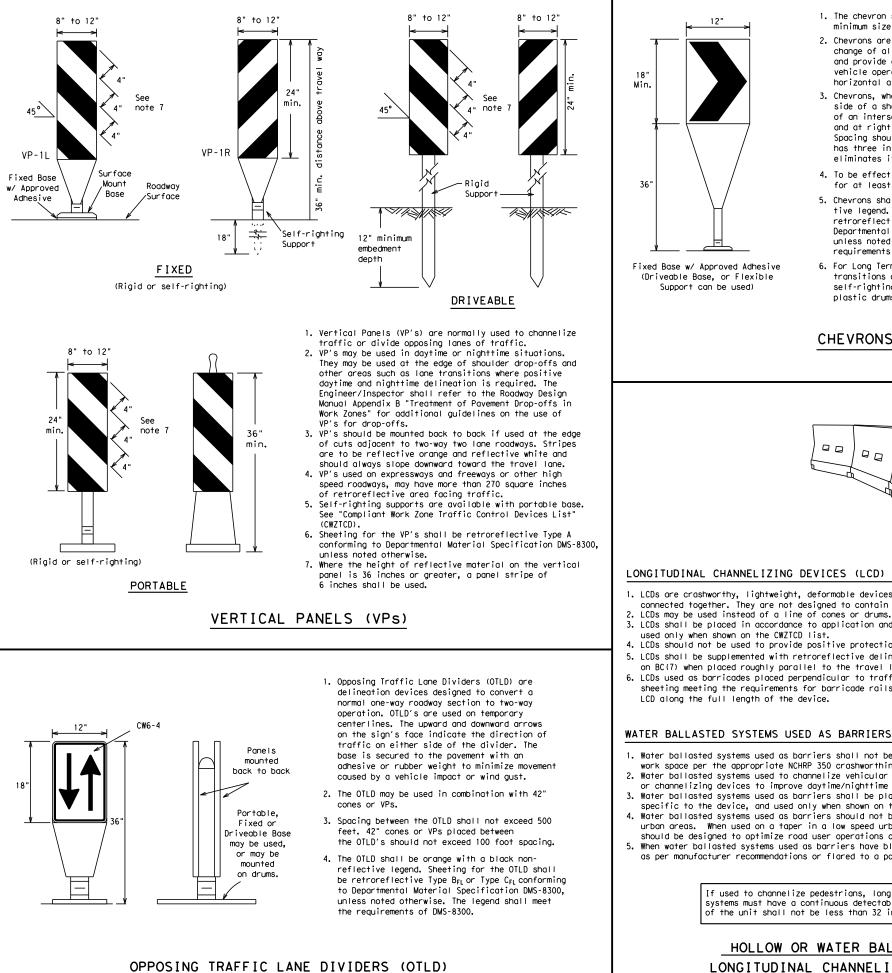
BALLAST

DATE:


- 1. Unballasted bases shall be large enough to hold up to 50 lbs. of sand. This base, when filled with the ballast material, should weigh between 35 lbs (minimum) and 50 lbs (maximum). The ballast may be sand in one to three sandbags separate from the base, sand in a sand-filled plastic base, or other ballasting devices as approved by the Engineer. Stacking of sandbags will be allowed, however height of sandbags above pavement surface may not exceed 12 inches.
- Bases with built-in ballast shall weigh between 40 lbs. and 50 lbs. Built-in ballast can be constructed of an integral crumb rubber base or a solid rubber base.
- 3. Recycled truck tire sidewalls may be used for ballast on drums approved for this type of ballast on the CWZTCD list.
- 4. The ballast shall not be heavy objects, water, or any material that would become hazardous to motorists, pedestrians, or workers when the drum is struck by a vehicle.
- 5. When used in regions susceptible to freezing, drums shall have drainage holes in the bottoms so that water will not collect and freeze becoming a hazard when struck by a vehicle.
- 6. Ballast shall not be placed on top of drums.
- 7. Adhesives may be used to secure base of drums to pavement.

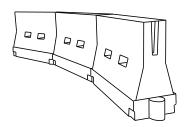
DIRECTION INDICATOR BARRICADE

- The Direction Indicator Barricade may be used in tapers, transitions, and other areas where specific directional auidance to drivers is pecessary.
- guidance to drivers is necessary.If used, the Direction Indicator Barricade should be used in series to direct the driver through the transition and into the intended travel lone.
- 3. The Direction Indicator Barricade shall consist of One-Direction Large Arrow (CWI-6) sign in the size shown with a black arrow on a background of Type B_{FL} or Type C_{FL} Orange retroreflective sheeting above a rail with Type A retroreflective sheeting in alternating 4" white and orange stripes sloping downward at an angle of 45 degrees in the direction road users are to pass. Sheeting types shall be as per DMS 8300.
- 4. Double arrows on the Direction Indicator Barricade will not be allowed.
- 5. Approved manufacturers are shown on the CWZICD List. Ballast shall be as approved by the manufacturers instructions.



DETECTABLE PEDESTRIAN BARRICADES

- When existing pedestrian facilities are disrupted, cl relocated in a TIC zone, the temporary facilities sha detectable and include accessibility features consist the features present in the existing pedestrian facil
- 2. Where pedestrians with visual disabilities normally a closed sidewalk, a device that is detectable by a per with a visual disability traveling with the aid of a shall be placed across the full width of the closed
- Detectable pedestrian barricades similar to the one above, longitudinal channelizing devices, some concr barriers, and wood or chain link fencing with a cont detectable edging can satisfactorily delineate a ped path.
- 4. Tape, rope, or plastic chain strung between devices detectable, do not comply with the design standards "Americans with Disabilities Act Accessibility Guide for Buildings and Facilities (ADAAG)" and should not as a control for pedestrian movements.
- 5. Worning lights shall not be attached to detectable p barricades.
- 6. Detectable pedestrian barricades may use 8" nominal barricade rails as shown on BC(10) provided that the rail provides a smooth continuous rail suitable for I trailing with no splinters, burrs, or sharp edges.


i or

	Note: Stars18" x 24" Sign (Maximum Sign Dimension) Chevron CWI-8, Opposing Traffic Lane Divider, Driveway sign D70a, Keep Right A series or other signs as approved by Engineer12" x 24" Vertical Panel mount with diagonals sloping down towards travel wayPlywood, Aluminum or Metal sign substrates shall NOT be used on plastic drumsSIGNS, CHEVRONS, AND VERTICAL PANELS MOUNTED ON PLASTIC DRUMS
t intended See note 3 st for oved rian	 Signs used on plastic drums shall be manufactured using substrates listed on the CWZICD. Chevrons and other work zone signs with an orange background shall be manufactured with Type B_{FL} or Type C_{FL}Orange sheeting meeting the color and retroreflectivity requirements of DMS-8300, "Sign Face Material," unless otherwise specified in the plans.
iling	 Vertical Panels shall be manufactured with orange and white sheeting meeting the requirements of DMS-8300 Type A Diagonal stripes on Vertical Panels shall slope down toward the intended traveled lane. Other sign messages (text or symbolic) may be used as approved by the Engineer. Sign dimensions shall not exceed 18 inches in width or 24 inches in height, except for the R9 series signs discussed in note 8 below.
	 Signs shall be installed using a 1/2 inch bolt (nominal) and nut, two washers, and one locking washer for each connection. Mounting bolts and nuts shall be fully engaged and adequately torqued. Bolts should not extend more than 1/2 inch beyond nuts. Chevrons may be placed on drums on the outside of curves, on merging tapers or on shifting tapers. When used in these locations they may be placed on every drum or spaced not more than on every third drum. A minimum of three (3) should be used at each location called for in the plans.
losed, or all be tent with lity. use the	8. R9-9, R9-10, R9-11 and R9-11a Sidewalk Closed signs which are 24 inches wide may be mounted on plastic drums, with approval of the Engineer. SHEET 8 OF 12
rson long cane sidewalk. pictured ete inuous lestrian are not in the lines be used	Texas Department of Transportation BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES
edestrian • top hand	BC (8) - 14 FILE: bc-14.dgn DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDOT CK:

- 1. The chevron shall be a vertical rectangle with a minimum size of 12 by 18 inches.
- 2. Chevrons are intended to give notice of a sharp change of alignment with the direction of travel and provide additional emphasis and guidance for vehicle operators with regard to changes in horizontal alignment of the roadway.
- 3. Chevrons, when used, shall be erected on the out side of a sharp curve or turn, or on the far side of an intersection. They shall be in line with and at right angles to approaching traffic. Spacing should be such that the motorist always has three in view, until the change in alignment eliminates its need.
- 4. To be effective, the chevron should be visible for at least 500 feet.
- 5. Chevrons shall be orange with a black nonreflective legend. Sheeting for the chevron shall be retroreflective Type BFL or Type CFL conforming to Departmental Material Specification DMS-8300, unless noted otherwise. The legend shall meet the requirements of DMS-8300.
- 6. For Long Term Stationary use on tapers or transitions on freeways and divided highways self-righting chevrons may be used to supplement plastic drums but not to replace plastic drums.

CHEVRONS

LONGITUDINAL CHANNELIZING DEVICES (LCD)

- 1. LCDs are crashworthy, lightweight, deformable devices that are highly visible, have good target value and can be connected together. They are not designed to contain or redirect a vehicle on impact.
- 3. LCDs shall be placed in accordance to application and installation requirements specific to the device, and used only when shown on the CWZTCD list.
- 4. LCDs should not be used to provide positive protection for obstacles, pedestrians or workers.
- 5. LCDs shall be supplemented with retroreflective delineation as required for temporary barriers on BC(7) when placed roughly parallel to the travel lanes.
- 6. LCDs used as barricades placed perpendicular to traffic should have at least one row of reflective sheeting meeting the requirements for barricade rails as shown on BC(10) placed near the top of the LCD along the full length of the device.

WATER BALLASTED SYSTEMS USED AS BARRIERS

- 1. Water ballasted systems used as barriers shall not be used solely to channelize road users, but also to protect the work space per the appropriate NCHRP 350 crashworthiness requirements based on roadway speed and barrier application.
- 2. Water ballasted systems used to channelize vehicular traffic shall be supplemented with retroreflective delineation or channelizing devices to improve daytime/nighttime visibility. They may also be supplemented with pavement markings.
- 3. Water ballasted systems used as barriers shall be placed in accordance to application and installation requirements specific to the device, and used only when shown on the CWZTCD list.
- 4. Water ballasted systems used as barriers should not be used for a merging taper except in low speed (less than 45 MPH) urban areas. When used on a taper in a low speed urban area, the taper shall be delineated and the taper length should be designed to optimize road user operations considering the available geometric conditions.
- When water ballasted systems used as barriers have blunt ends exposed to traffic, they should be attenuated as per manufacturer recommendations or flared to a point outside the clear zone.

If used to channelize pedestrians, longitudinal channelizing devices or water ballasted systems must have a continuous detectable bottom for users of long canes and the top of the unit shall not be less than 32 inches in height.

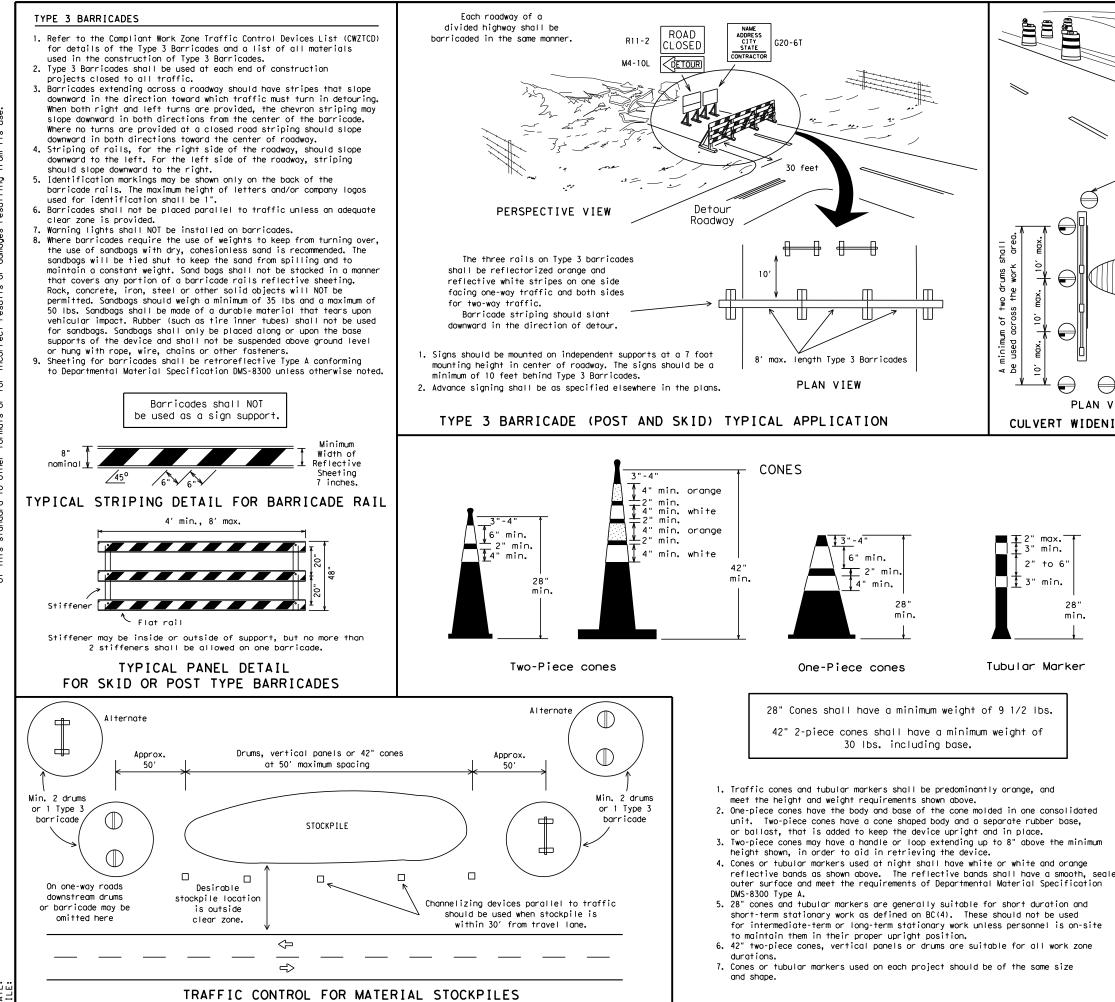
HOLLOW OR WATER BALLASTED SYSTEMS USED AS LONGITUDINAL CHANNELIZING DEVICES OR BARRIERS

DATE:

GENERAL NOTES

- 1. Work Zone channelizing devices illustrated on this sheet may be installed in close proximity to traffic and are suitable for use on high or low speed roadways. The Engineer/Inspector shall ensure that spacing and placement is uniform and in accordance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- 2. Channelizing devices shown on this sheet may have a driveable, fixed or portable base. The requirement for self-righting channelizing devices must be specified in the General Notes or other plan sheets.
- 3. Channelizing devices on self-righting supports should be used in work zone areas where channelizing devices are frequently impacted by errant vehicles or vehicle related wind gusts making alignment of the channelizing devices difficult to maintain. Locations of these devices shall be detailed elsewhere in the plans. These devices shall conform to the TMUTCD and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD).
- 4. The Contractor shall maintain devices in a clean condition and replace damaged, nonreflective, faded, or broken devices and bases as required by the Engineer/Inspector. The Contractor shall be required to maintain proper device spacing and alignment.
- 5. Portable bases shall be fabricated from virgin and/or recycled rubber. The portable bases shall weigh a minimum of 30 lbs.
- 6. Pavement surfaces shall be prepared in a manner that ensures proper bonding between the adhesives, the fixed mount bases and the pavement surface. Adhesives shall be prepared and applied according to the manufacturer's recommendations.
- 7. The installation and removal of channelizing devices shall not cause detrimental effects to the final pavement surfaces, including pavement surface discoloration or surface integrity. Driveable bases shall not be permitted on final pavement surfaces. The Engineer/Inspector shall approve all application and removal procedures of fixed bases.

Posted Speed	Formula	D	Minimur esirab er Lena X X	le gths	Spacir Channe	
*		10' Offset	11' Offset	12' Offset	On a Taper	On a Tangent
30	2	150′	165′	180′	30'	60′
35	$L = \frac{WS^2}{60}$	205′	225′	245′	35′	70′
40	60	265′	295′	320'	40′	80′
45		450 <i>'</i>	495 <i>'</i>	540′	45′	90′
50		500ʻ	550'	600'	50 <i>'</i>	100′
55	L=WS	550ʻ	605′	660′	55 <i>'</i>	110′
60	2 113	600 <i>'</i>	660′	720′	60 <i>'</i>	120′
65		650 <i>'</i>	715′	780'	65 <i>'</i>	130'
70		700′	770′	840'	70'	140′
75		750′	825′	900'	75 <i>'</i>	150′
80		800′	880′	960'	80 <i>'</i>	160′


X Taper lengths have been rounded off. L=Length of Taper (FT.) W=Width of Offset (FT.) S=Posted Speed (MPH)

SUGGESTED MAXIMUM SPACING OF CHANNELIZING DEVICES AND MINIMUM DESIRABLE TAPER LENGTHS

SHEET 9 OF 12	
Texas Department of Transportation	Traffic Operations Division Standard
BARRICADE AND CONSTR	UCTION

CHANNELIZING DEVICES

	BC (9) -14													
E:	bc-14.dgn		dn: TxDOT		ск:TxDOT	DW:	TxDO	T	ск∶ТхDОТ					
TxDOT	November 2002		CONT	SECT JOB				HIGHWAY						
	REVISIONS													
-07	8-14		DIST COUNTY SHEET NO				HEET NO.							
-13		үк			COLORADO				15					
2														

DATE:

	Typical Plastic Drum PERSPECTIVE VIEW These drums are not required on one-way roadway	 Where positive redirectional capability is provided, drums may be omitted. Plastic construction fencing may be used with drums for sofety as required in the plans. Vertical Panels on flexible support may be substituted for drums when the shoulder width is less than 4 feet. When the shoulder width is greater than 12 feet, steady-burn lights may be omitted if drums are used. Drums must extend the length of the culvert widening.
\ominus	ا ا	LEGEND
	·	(T) Plastic drum
		Plastic drum with steady burn light or yellow warning reflector
		(SB) Steady burn warning light or yellow warning reflector
	Increase number of plastic dr side of approaching traffic i width makes it necessary. (mi and maximum of 4 drums) ROTHER ISOLATED WORK	f the crown
	 PROJECTS LET PROJECTS LET Image: State of the state of th	ed to separate lanes of traffic (opposing jects. 2 inch, two-piece cone with an alternate ch retroreflective bands, with an een bands. The color of the band should the edgeline (yellow for left edgeline, or which the device is substituted or for eflectorized bands shall be retroreflective mental Material Specification DMS-8300, um of 30 lbs. SHEET 10 OF 12 Traffic
ed	BARRIC	epartment of Transportation
	FILE: bc-14. dg (C) TXDOT November REVISIO 9-07 8-14 7-13	2002 CONT SECT JOB HIGHWAY

WORK ZONE PAVEMENT MARKINGS

GENERAL

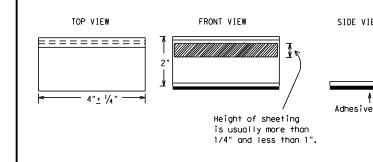
- 1. The Contractor shall be responsible for maintaining work zone and existing pavement markings, in accordance with the standard specifications and special provisions, on all roadways open to traffic within the CSJ limits unless otherwise stated in the plans.
- 2. Color, patterns and dimensions shall be in conformance with the Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- 3. Additional supplemental pavement marking details may be found in the plans or specifications.
- 4. Pavement markings shall be installed in accordance with the TMUTCD and as shown on the plans.
- 5. When short term markings are required on the plans, short term markings shall conform with the TMUTCD, the plans and details as shown on the Standard Plan Sheet WZ(STPM).
- 6. When standard pavement markings are not in place and the roadway is opened to traffic, DO NOT PASS signs shall be erected to mark the beginning of the sections where passing is prohibited and PASS WITH CARE signs at the beginning of sections where passing is permitted.
- 7. All work zone pavement markings shall be installed in accordance with Item 662, "Work Zone Pavement Markings."

RAISED PAVEMENT MARKERS

- 1. Raised pavement markers are to be placed according to the patterns on BC(12).
- 2. All raised pavement markers used for work zone markings shall meet the requirements of Item 672, "RAISED PAVEMENT MARKERS" and Departmental Material Specification DMS-4200 or DMS-4300.

PREFABRICATED PAVEMENT MARKINGS

- 1. Removable prefabricated pavement markings shall meet the requirements of DMS-8241.
- 2. Non-removable prefabricated pavement markings (foil back) shall meet the requirements of DMS-8240.


MAINTAINING WORK ZONE PAVEMENT MARKINGS

- 1. The Contractor will be responsible for maintaining work zone pavement markings within the work limits.
- 2. Work zone pavement markings shall be inspected in accordance with the frequency and reporting requirements of work zone traffic control device inspections as required by Form 599.
- 3. The markings should provide a visible reference for a minimum distance of 300 feet during normal daylight hours and 160 feet when illuminated by automobile low-beam headlights at night, unless sight distance is restricted by roadway geometrics.
- 4. Markings failing to meet this criteria within the first 30 days after placement shall be replaced at the expense of the Contractor as per Specification Item 662.

REMOVAL OF PAVEMENT MARKINGS

- 1. Pavement markings that are no longer applicable, could create confusion or direct a motorist toward or into the closed portion of the roadway shall be removed or obliterated before the roadway is opened to traffic.
- 2. The above shall not apply to detours in place for less than three days, where flaggers and/or sufficient channelizing devices are used in lieu of markings to outline the detour route.
- 3. Pavement markings shall be removed to the fullest extent possible, so as not to leave a discernable marking. This shall be by any method approved by TxDOT Specification Item 677 for "Eliminating Existing Pavement Markings and Markers".
- 4. The removal of pavement markings may require resurfacing or seal coating portions of the roadway as described in Item 677.
- 5. Subject to the approval of the Engineer, any method that proves to be successful on a particular type pavement may be used.
- 6. Blast cleaning may be used but will not be required unless specifically shown in the plans.
- 7. Over-painting of the markings SHALL NOT BE permitted.
- 8. Removal of raised pavement markers shall be as directed by the Engineer.
- 9. Removal of existing pavement markings and markers will be paid for directly in accordance with Item 677, "ELIMINATING EXISTING PAVEMENT MARKINGS AND MARKERS, " unless otherwise stated in the plans.
- 10.Black-out marking tape may be used to cover conflicting existing markings for periods less than two weeks when approved by the Engineer.

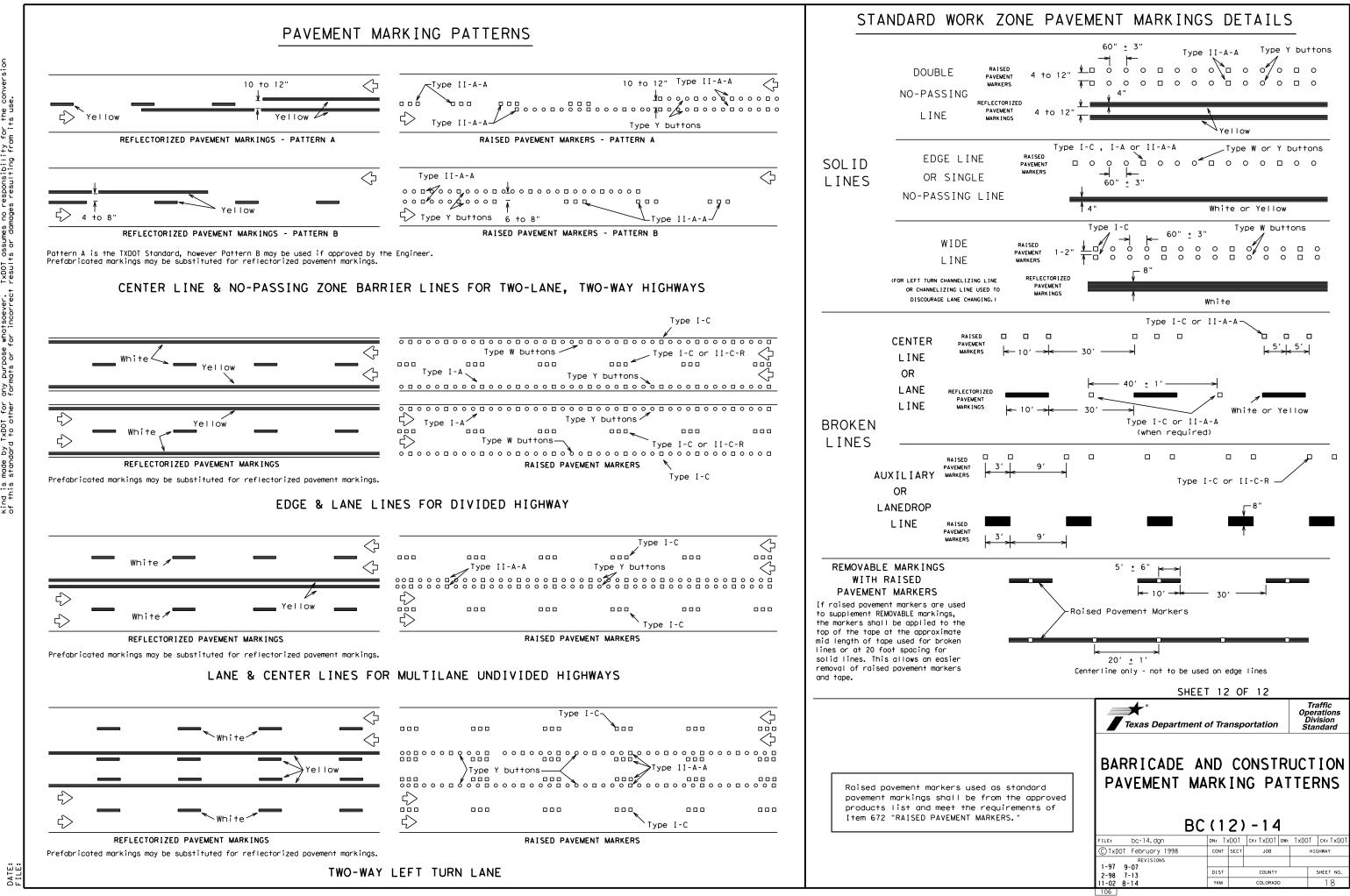
Temporary Flexible-Reflective Roadway Marker Tabs

STAPLES OR NAILS SHALL NOT BE USED TO SECUR TEMPORARY FLEXIBLE-REFLECTIVE ROADWAY MARKE TABS TO THE PAVEMENT SURFACE

- 1. Temporary flexible-reflective roadway marker tabs used as guidemarks shall meet the requirements of DMS-8242.
- 2. Tabs detailed on this sheet are to be inspected and accepted by the Engineer or designated representative. Sampling and testing is not normally required, however at the option of the Engineer, either "A" or "B" below may be imposed to assure quality before placement on the roadway.
 - A, Select five (5) or more tabs at random from each lot or shipment and submit to the Construction Division, Materials and Pavement Section to determine specification compliance.
 - B. Select five (5) tabs and perform the following test. Affix five (5) tabs at 24 inch intervals on an asphaltic pavement in a straight line. Using a medium size passenger vehicle or pickup, run over the markers with the front and rear tires at a speed of 35 to 40 miles per hour, four (4) times in each direction. No more than one (1) out of the five (5) reflective surfaces shall be lost or displaced as a result of this test.
- 3. Small design variances may be noted between tab manufacturers.
- 4. See Standard Sheet WZ(STPM) for tab placement on new pavements. See Standard Sheet TCP(7-1) for tab placement on seal coat work.

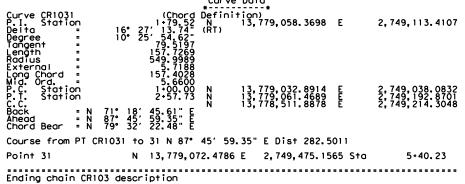
RAISED PAVEMENT MARKERS USED AS GUIDEMARKS

- 1. Raised pavement markers used as guidemarks shall be from the approved product list, and meet the requirements of DMS-4200,
- 2. All temporary construction raised pavement markers provided on a project shall be of the same manufacturer.
- 3. Adhesive for guidemarks shall be bituminous material hot applied or butyl rubber pad for all surfaces, or thermoplastic for concrete surfaces.

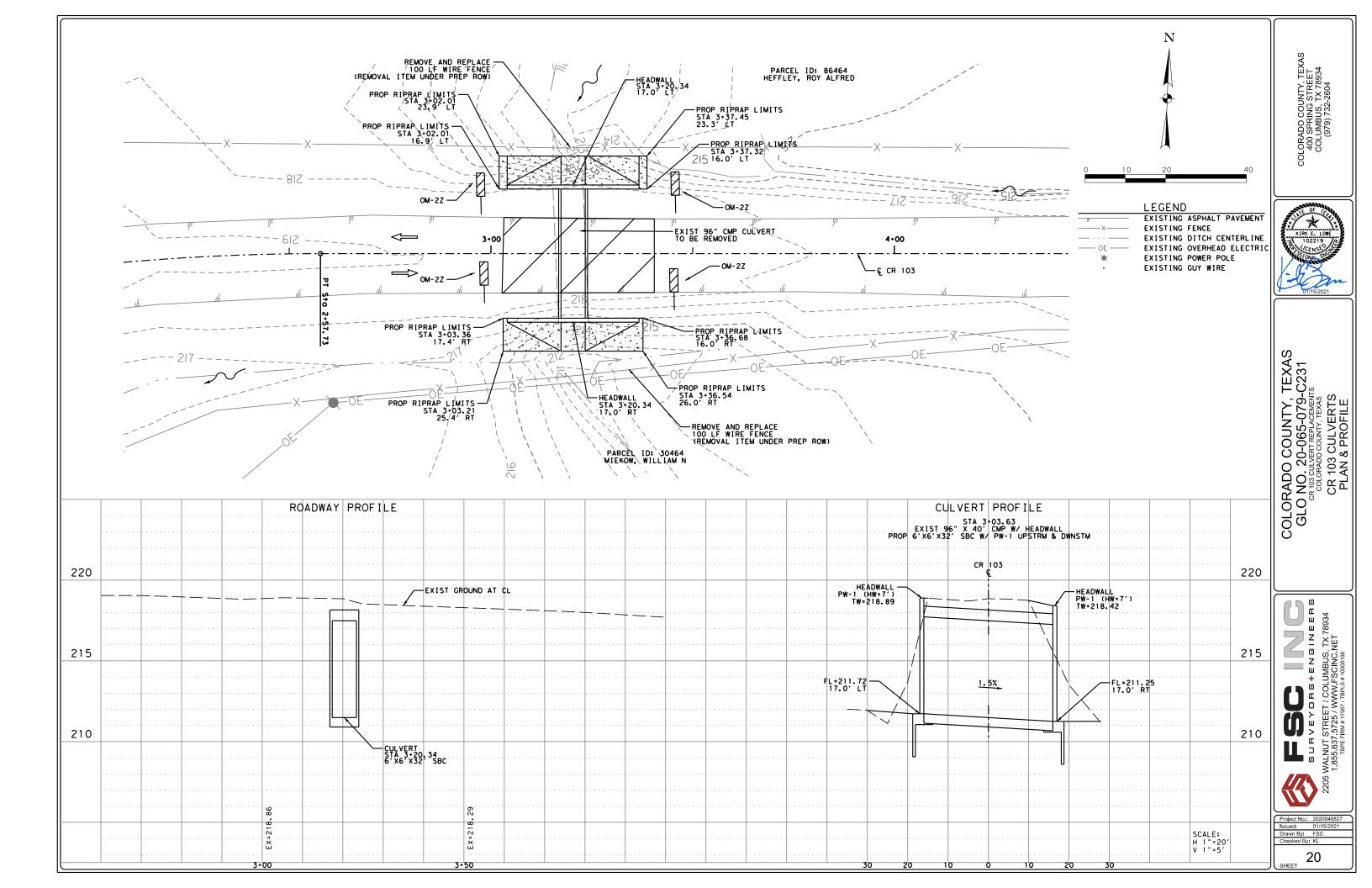

Guidemarks shall be designated as:

YELLOW - (two amber reflective surfaces with yellow body). WHITE - (one silver reflective surface with white body).

	DEPARTMENTAL MATERIAL SPECIFICATIO	NS
PAV	EMENT MARKERS (REFLECTORIZED)	DMS-4200
TRA	FFIC BUTTONS	DMS-4300
EPO	XY AND ADHESIVES	DMS-6100
BIT	UMINOUS ADHESIVE FOR PAVEMENT MARKERS	DMS-6130
PER	MANENT PREFABRICATED PAVEMENT MARKINGS	DMS-8240
	PORARY REMOVABLE, PREFABRICATED EMENT MARKINGS	DMS-8241
	PORARY FLEXIBLE, REFLECTIVE DWAY MARKER TABS	DMS-8242
non- pave	st of prequalified reflective raised pavement m reflective traffic buttons, roadway marker tabs ement markings can be found at the Material Proc address shown on BC(1).	and othe


R	Е
E	R

SHEET	SHEET 11 OF 12											
Texas Department of	of Tra	nsp	ortation	Ope Di	raffic rations vision ndard							
PAVEMEN	BARRICADE AND CONSTRUCTION PAVEMENT MARKINGS BC (11) - 14											
FILE: bc-14.dgn	DN: T:	<d0t< th=""><th>CK: TXDOT DW:</th><th>TxDOT</th><th>ск: TxDOT</th></d0t<>	CK: TXDOT DW:	TxDOT	ск: TxDOT							
© TxDOT February 1998	CONT SECT JOB			н	IGHWAY							
REVISIONS 2-98 9-07 1-02 7-13 11-02 8-14	DIST YKM		COUNTY		SHEET NO. 17							
105												



DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDD1 for any purpose whatsoever. TxDD1 assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

Chain CR103 contains: CUR CR1031 31 Curve Data (Chord Definition) 1+79.52 N 13,779,058.3698 E 16* 27: 13.74" (RT) 10* 25: 54.62" 79.5197 15:7269 549.9989 ...5.710 Beginning chain CR103 description

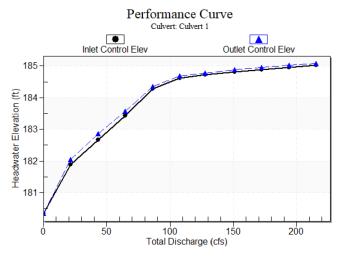


Table 1 - Summary of Culvert Flows at Crossing: Camp Street (Existing)

Headwater Elevation (ft)	Total Discharge (cfs)	otal Discharge (cfs) Culvert 1 Discharge (cfs) (cfs)		Iterations
100.04	0.00		0.00	
180.34	0.00	0.00	0.00	1
182.04	21.55	21.55	0.00	1
182.85	43.10	43.10	0.00	1
183.58	64.65	64.65	0.00	1
184.35	86.20	86.20	0.00	1
184.69	107.75	93.34	14.11	10
184.79	127.90	95.60	32.05	5
184.88	150.85	97.35	53.17	4
184.95	172.40	98.51	73.77	4
185.02	193.95	100.05	93.84	4
185.08	215.50	101.26	114.00	3
184.56	91.12	91.12	0.00	Overtopping

Culvert Performance Curve Plot: Culvert 1

Table 2 - Culvert Summary Table: Culvert 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	180.34	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
21.55	21.55	182.04	1.550	1.699	2-M2c	1.378	1.040	1.040	0.513	4.953	4.204
43.10	43.10	182.85	2.330	2.514	2-M2c	2.152	1.492	1.492	0.793	6.138	5.438
64.65	64.65	183.58	3.083	3.238	7-M2c	3.000	1.845	1.845	1.027	7.091	6.295
86.20	86.20	184.35	3.949	4.007	7-M2c	3.000	2.138	2.138	1.237	7.996	6.967
107.75	93.34	184.69	4.280	4.354	7-M2c	3.000	2.225	2.225	1.432	8.302	7.525
127.90	95.60	184.79	4.390	4.446	7-M2c	3.000	2.251	2.251	1.604	8.400	7.974
150.85	97.35	184.88	4.477	4.536	7-M2c	3.000	2.271	2.271	1.791	8.477	8.423
172.40	98.51	184.95	4.536	4.612	7-M2c	3.000	2.284	2.284	1.959	8.528	8.799
193.95	100.05	185.02	4.615	4.678	7-M2c	3.000	2.302	2.302	2.122	8.597	9.138
215.50	101.26	185.08	4.677	4.742	7-M2c	3.000	2.315	2.315	2.281	8.650	9.448

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 127.9 cfs Maximum Flow: 215.5 cfs

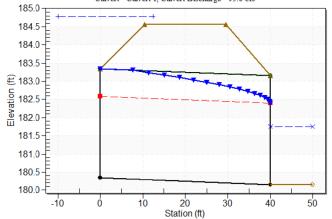


Table 3 - Downstream Channel Rating Curve (Crossing: Camp Street (Existing))

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	180.15	0.00	0.00	0.00	0.00
21.55	180.66	0.51	4.20	0.64	1.03
43.10	180.94	0.79	5.44	0.99	1.08
64.65	181.18	1.03	6.30	1.28	1.09
86.20	181.39	1.24	6.97	1.54	1.10
107.75	181.58	1.43	7.52	1.79	1.11
127.90	181.75	1.60	7.97	2.00	1.11
150.85	181.94	1.79	8.42	2.24	1.11
172.40	182.11	1.96	8.80	2.45	1.11
193.95	182.27	2.12	9.14	2.65	1.11
215.50	182.43	2.28	9.45	2.85	1.10

Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Camp Street (Existing), Design Discharge - 127.9 cfs Culvert - Culvert 1, Culvert Discharge - 95.6 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 180.34 ft Outlet Station: 40.00 ft Outlet Elevation: 180.15 ft Number of Barrels: 2

Culvert Data Summary - Culvert 1

Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Tailwater Channel Data - Camp Street (Existing)

Tailwater Channel Option: Rectangular Channel Bottom Width: 10.00 ft Channel Slope: 0.0200 Channel Manning's n: 0.0300 Channel Invert Elevation: 180.15 ft

Crest Length: 100.00 ft Crest Elevation: 184.56 ft Roadway Surface: Paved Roadway Top Width: 19.00 ft

Roadway Data for Crossing: Camp Street (Existing)

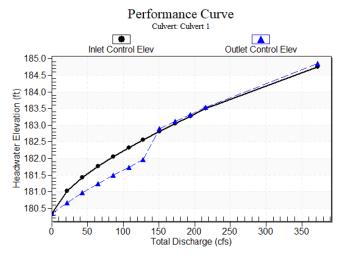

- Roadway Profile Shape: Constant Roadway Elevation

Table 1 - Summary of Culvert Flows at Crossing: Camp Street (Proposed)

Headwater Elevation (ft)	evation Total Discharge (cfs) Culvert 1 Discharge (cfs) Colvert 1 Discharge (cfs) (cfs) (cfs)		Roadway Discharge (cfs)	Iterations
180.34	0.00	0.00	0.00	1
181.02	21.55	21.55	0.00	1
181.43	43.10	43.10	0.00	1
181.76	64.65	64.65	0.00	1
182.06	86.20	86.20	0.00	1
182.32	107.75	107.75	0.00	1
182.56	127.90	127.90	0.00	1
182.89	150.85	150.85	0.00	1
183.11	172.40	172.40	0.00	1
183.32	193.95	193.95	0.00	1
183.54	215.50	215.50	0.00	1
184.56	308.58	308.58	0.00	Overtopping

Culvert Performance Curve Plot: Culvert 1

Table 2 - Culvert Summary Table: Culvert 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	180.34	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
21.55	21.55	181.02	0.684	0.329	1-JS1t	0.372	0.400	0.513	0.513	2.803	4.204
43.10	43.10	181.43	1.086	0.627	1-JS1t	0.581	0.635	0.793	0.793	3.626	5.438
64.65	64.65	181.76	1.423	0.891	1-JS1t	0.758	0.832	1.027	1.027	4.197	6.295
86.20	86.20	182.06	1.717	1.144	1-JS1t	0.919	1.008	1.237	1.237	4.645	6.967
107.75	107.75	182.32	1.984	1.393	1-JS1t	1.068	1.170	1.432	1.432	5.016	7.525
127.90	127.90	182.56	2.218	1.627	1-JS1t	1.202	1.312	1.604	1.604	5.316	7.974
150.85	150.85	182.89	2.472	2.554	1-S1t	1.347	1.464	1.791	1.791	5.615	8.423
172.40	172.40	183.11	2.702	2.767	1-S1t	1.480	1.601	1.959	1.959	5.866	8.799
193.95	193.95	183.32	2.930	2.984	1-S1t	1.609	1.732	2.122	2.122	6.092	9.138
215.50	215.50	183.54	3.157	3.196	1-S1t	1.734	1.858	2.281	2.281	6.299	9.448

Crossing Discharge Data

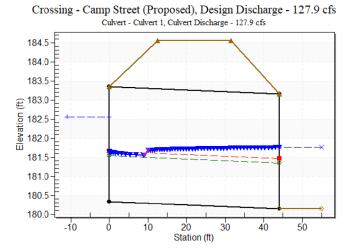

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 127.9 cfs Maximum Flow: 215.5 cfs

Table 3 - Downstream Cha

Flow (cfs)	Water Surface	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
	Elev (ft)				
0.00	180.15	0.00	0.00	0.00	0.00
21.55	180.66	0.51	4.20	0.64	1.03
43.10	180.94	0.79	5.44	0.99	1.08
64.65	181.18	1.03	6.30	1.28	1.09
86.20	181.39	1.24	6.97	1.54	1.10
107.75	181.58	1.43	7.52	1.79	1.11
127.90	181.75	1.60	7.97	2.00	1.11
150.85	181.94	1.79	8.42	2.24	1.11
172.40	182.11	1.96	8.80	2.45	1.11
193.95	182.27	2.12	9.14	2.65	1.11
215.50	182.43	2.28	9.45	2.85	1.10

Water Surface Profile Plot for Culvert: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 180.34 ft Outlet Station: 44.00 ft Outlet Elevation: 180.15 ft Number of Barrels: 3

Culvert Data Summary - Culvert 1

Barrel Shape: Concrete Box Barrel Span: 5.00 ft Barrel Rise: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: None

Tailwater Channel Option: Rectangular Channel Bottom Width: 10.00 ft Channel Slope: 0.0200 Channel Manning's n: 0.0300 Channel Invert Elevation: 180.15 ft

Crest Length: 100.00 ft Crest Elevation: 184.56 ft Roadway Surface: Paved Roadway Top Width: 19.00 ft

annel	Rating	Curve	(Crossing:	Camp	Street	(Pro	posed))

Tailwater Channel Data - Camp Street (Proposed)

Roadway Data for Crossing: Camp Street (Proposed)

- Roadway Profile Shape: Constant Roadway Elevation

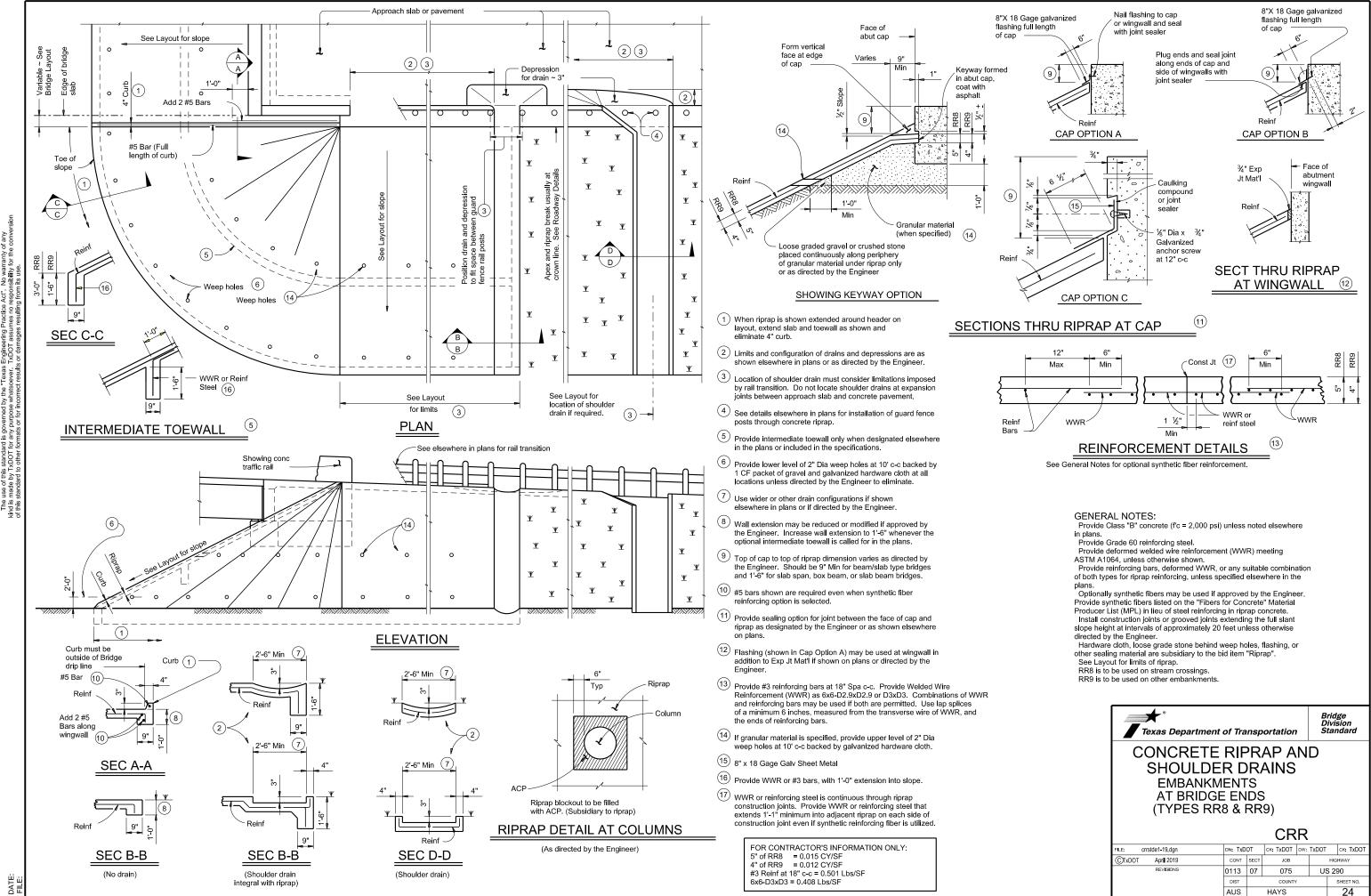
Culvert Station and/or Creek name followed by applicable end (Lt, Rt or Both)	Description of Box Culvert No. Spans ~ Span X Height	Max Fill Height (Ft)	Applicable Box Culvert Standard 4	Applicable Wingwall or End Treatment Standard	Skew Angle (0°,15°, 30° or 45°)	Side Slope or Channel Slope Ratio (SL:1)	T Culvert Top Slab Thickness (In)	Wall	C Estimated Curb Height (Ft)	Hw (1) Height of Wingwall (Ft)	A Curb to End of Wingwall (Ft)	B Offset of End of Wingwall (Ft)	Lw Length of Longest Wingwall (Ft)	Ltw Culvert Toewall Length (Ft)	Atw Anchor Toewall Length (Ft)	Riprap Apron	"C" Conc	Class "C" Conc (Wingwall) (C.Y.)	Total Wingwall Area (S.F.)
CR 114 AT PINOAK CREEK (L+)	1 ~ 6'x 6'	10'	SCC-5&6	PW-1		2:1	8"	7"	0.500'	N/A'	9.250	N/A'	14.333'	7.167	N/A	0.0	0.2	27.2	410
	-																		
		+ +																	
		+																	
		<u> </u>																	
									· -										
									\bigcup_{F}	oot for bi	dding purp	n will be ro oses.	Junued to 1	me nearest					

NOTES:

- Skew Angle = 0° for SW-0, FW-0, SETB-CD, SETB-SW-0, and SETB-FW-0 standards. 30° Maximum for Safety End Treatment
- SL:1 = Horizontal:1 Vertical
 - Side Slope at culvert for Flared or Straight Wingwalls. Channel Slope for Parallel Wingwalls. Slope shall be 3:1 or flatter for Safety End Treatments.
- T = Box Culvert Top Slab Thickness. Dimension can be found on the applicable Box Culvert Standard.
- U = Box Culvert Wall Thickness. Dimension can be found on the applicable Box Culvert Standard.
- C = Curb Height.
- See applicable wing or end treatment standards for calculations of Hw, A, B, Lw, Ltw, Atw, and Total Wingwall Area. Hw = Height of Wingwall. A = Distance from Face of Curb to End of Wingwall (Not applicable to Parallel or Straight Wingwalls). B = Offset of End of Wingwall (Not applicable to Parallel or Straight Wingwalls).

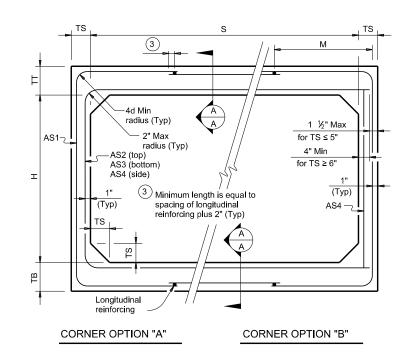
- Lw = Length of Longest Wingwall. Ltw = Length of Culvert Toewall (Not applicable when using Riprap Apron). Atw = Length of Anchor Toewall (Applicable to Safety End Treatment only). Total Wingwall Area = Wingwall area in S.F. for two wingwalls (one structure end) if Lt or Rt. Area for four wingwalls (two structure ends) if Both.

- For curbs using the RAC standard, quantities shown must be increased by a factor of 2. If Class "S" concrete is required for the top slab of the culvert, the curb concrete shall also be Class "S". Curb concrete is considered part of the Box Culvert for payment.
- 3 Concrete volume shown is total of wing, footing, culvert toewall (if any), anchor toewall (if any) and wingwall toewall. Riprap apron, culvert and curb quantities are not included.
- (4) Regardless of the type of culvert shown on this sheet, the Contractor shall have the option of furnishing cast-in-place or precast culverts unless otherwise shown elsewhere on the plans. If the Contractor elects to provide culverts of a different type than those shown on this sheet, it shall be the Contractor's responsibility to make the necessary adjustments to the dimensions and quantities shown.

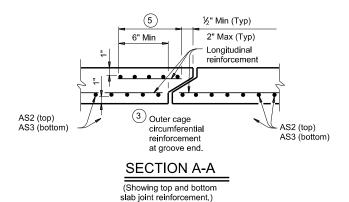

This sheet is a supplement to the Box Culvert standards. It is to be filled out by the culvert specifier and provides dimensions for the construction of the Box Culvert Wingwalls and Safety End Treatments.

An Excel 97 spreadsheet to assist in completing this table can be downloaded from the Bridge Standards (English) web page on the TxDOT web site. The completed sheet shall be signed, sealed, and dated by a licensed Professional Engineer.

Texas Department	of Tra	nsp	ortation		ridge Ivision tandard
BOX CULVER WINGS AND EI					
			BCS	5	
FILE: bcsstde1.dgn	DN: TxD	от	ск: TxDOT р	v: TxDOT	ск: GAF
CTxDOT February 2010	CONT	SECT	JOB		HIGHWAY
REVISIONS					
	DIST		COUNTY		SHEET NO.

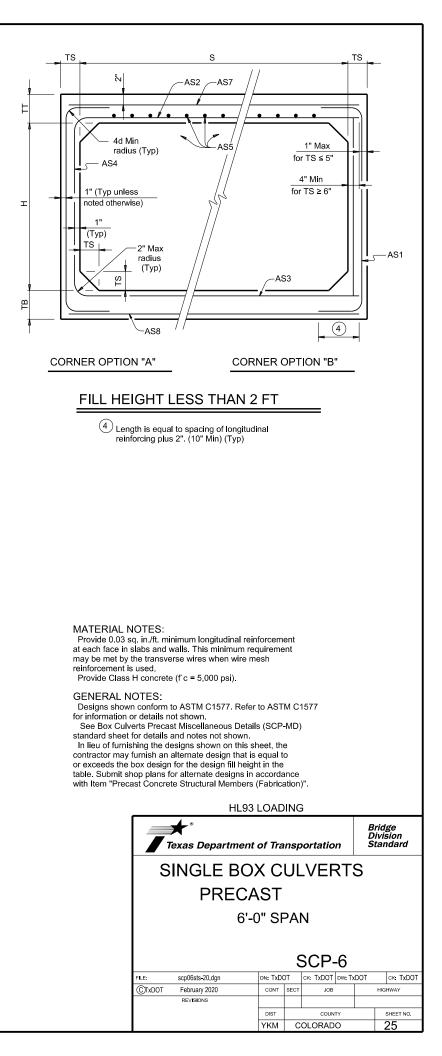

YKM COLORADO

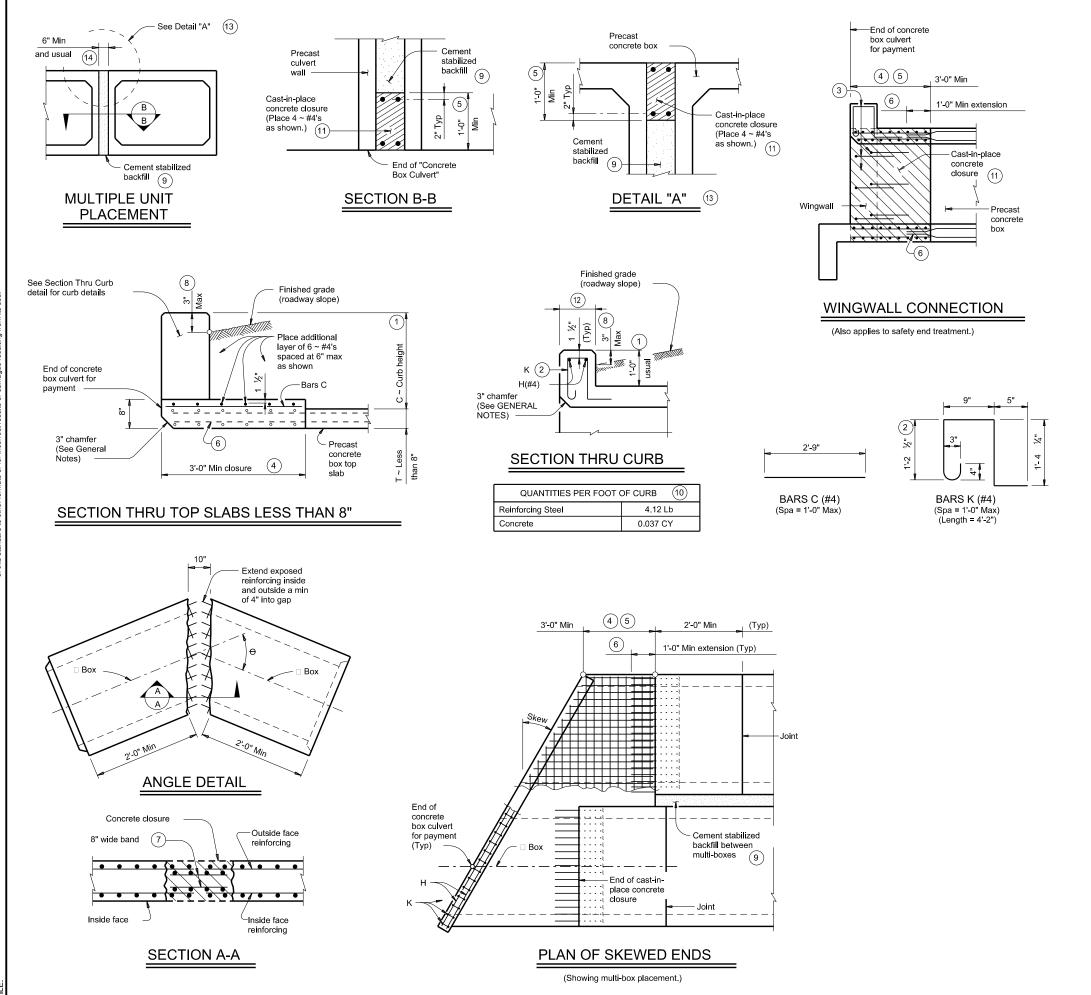
23



DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice kind is made by TXDOT for any purpose whatsoever. TXDOT assumes no verthe: servatard howhar formarts or for incorrect results or damages resulting

							BC	X DA	TA						
		SECTIO	N DIMEN	SIONS		Fill	м		RE	INFORCI	NG (sq. ir	n. / ft.)	2		(1) Lift
	S (ft.)	H (ft.)	TT (in.)	TB (in.)	TS (in.)	Height (ft.)	(Min) (in.)	AS1	AS2	AS3	AS4	AS5	AS7	AS8	Weigl (tons
	6	2	8	7	7	< 2	-	0.23	0.27	0.19	0.17	0.19	0.19	0.17	7.2
	6	2	7	7	7	2 < 3	43	0.25	0.21	0.17	0.17	-	-	-	6.8
	6	2	7	7	7	3 - 5	43	0.20	0.17	0.17	0.17	-	-	-	6.8
	6	2	7	7	7	10	39	0.20	0.17	0.17	0.17	-	-	-	6.8
	6	2	7	7	7	15	39	0.26	0.20	0.20	0.17	-	-	-	6.8
	6	2	7	7	7	20	39	0.34	0.26	0.26	0.17	-	-	-	6.8
	6 6	2	7	7	7	25 30	39 39	0.43	0.32	0.32	0.17	-	-	-	6.8
	0	2	1	7	1	- 30	- 39	0.52	0.30	0.39	0.17	-	-	-	0.0
	6	3	8	7	7	< 2	-	0.20	0.31	0.22	0.17	0.19	0.19	0.17	7.9
of this standard to other formats or for incorrect results or damages resulting from its use.	6	3	7	7	7	2 < 3	43	0.20	0.31	0.22	0.17				7.5
	6	3	7	7	7	3-5	39	0.21	0.24	0.13	0.17	-	_	-	7.5
	6	3	7	7	7	10	39	0.17	0.18	0.19	0.17	-	_	-	7.5
ė	6	3	7	7	7	15	38	0.22	0.24	0.24	0.17	-	-	-	7.5
ts us	6	3	7	7	7	20	38	0.28	0.31	0.31	0.17	-	-	-	7.5
rom	6	3	7	7	7	25	38	0.35	0.38	0.39	0.17	-	-	-	7.5
ing fi	6	3	7	7	7	30	38	0.42	0.46	0.46	0.17	-	-	-	7.
esult															
ges r	6	4	8	7	7	< 2	-	0.19	0.34	0.25	0.17	0.19	0.19	0.17	8.0
ama	6	4	7	7	7	2 < 3	43	0.19	0.27	0.21	0.17	-	-	-	8.
ord	6	4	7	7	7	3 - 5	39	0.17	0.21	0.19	0.17	-	-	-	8.3
sults	6	4	7	7	7	10	39	0.17	0.20	0.21	0.17	-	-	-	8.2
ct re	6	4	7	7	7	15	38	0.18	0.27	0.27	0.17	-	-	-	8.2
corre	6	4	7	7	7	20	38	0.24	0.34	0.35	0.17	-	-	-	8.2
orin	6	4	7	7	7	25	38	0.29	0.43	0.42	0.17	-	-	-	8.2
s or 1	6	4	7	7	7	30	38	0.35	0.51	0.52	0.17	-	-	-	8.2
rmat															
er fo	6	5	8	7	7	< 2	-	0.19	0.37	0.28	0.17	0.19	0.19	0.17	9.3
o oth	6	5	7	7	7	2 < 3	43	0.17	0.30	0.24	0.17	-	-	-	8.9
ard t	6	5	7	7	7	3-5	43	0.17	0.23	0.21	0.17	-	-	-	8.9
stand	6	5	7	7	7	10	39	0.17	0.22	0.23	0.17	-	-	-	8.9
this (6	5	7	7	7	15	38	0.17	0.28	0.29	0.17	-	-	-	8.9
o	6 6	5 5	7	7	7	20 25	38 38	0.20	0.37	0.38	0.17	-	-	-	8.9
	6	5	7	7	7	30	38	0.25	0.45	0.46	0.17	-	-	-	8.9
	0			/	/	- 30	- 50	0.30	0.34	0.55	0.17	-	-	-	0.8
	6	6	8	7	7	< 2	-	0.19	0.38	0.30	0.17	0.19	0.19	0.17	10
	6	6	7	7	7	2<3	52	0.13	0.32	0.26	0.17	-	-	-	9.6
	6	6	7	7	7	3-5	52	0.17	0.24	0.20	0.17	-	-	-	9.6
	6	6	7	7	7	10	43	0.17	0.23	0.24	0.17	-	-	-	9.6
	6	6	7	7	7	15	39	0.17	0.29	0.31	0.17	-	-	-	9.6
	6	6	7	7	7	20	39	0.18	0.38	0.39	0.17	-	-	-	9.6
	6	6	7	7	7	25	38	0.23	0.46	0.48	0.17	-	-	-	9.6
	6	6	7	7	7	30	38	0.27	0.55	0.57	0.17	-	-	-	9.6
															1


FILL HEIGHT 2 FT AND GREATER



(1) For box length = 8'-0"

AS1 thru AS4, AS7 and AS8 are minimum required areas of reinforcement per linear foot of box length. AS5 is minimum required area of reinforcement per linear foot of box width.

DATE: FILE:

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the converof this standard to other formats or for incorrect results or damages resulting from its use. ① 0" Min to 5'-0" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail, bicycle rail, or curbs taller than 1'-0, refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS Rails (T631-CM) standard sheet. Refer to the Box Culvert Rail Mounting Details (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

Proceeding of the set of the s

(3) Extend curb, wingwall, or safety end treatment reinforcing into concrete closure. Bend or trim, as necessary, any reinforcing that does not fit into closure area.

Provide a 3'-0" Min cast-in-place concrete closure. Break back boxes in the field or cast boxes short. Provide bands of reinforcing in the closure that are the same size and spacing as in the precast box section. Provide #4 longitudinal reinforcement spaced at 12 inches Max within the closure. Except where shown otherwise, construct the cast-in-place closure flush with the inside and outside faces of the precast box section.

(5) For multiple unit placements, adjust the length of the closure for the interior walls as necessary. Provide a 3'-0" Min cast-in-place closure in the top slab, bottom slab, and exterior wall. See Section B-B detail when interior walls are cast full length.

 $^{(6)}$ Extend precast box reinforcing a minimum of 1'-0" into concrete closure (Typ).

Place bands of reinforcing matching the inside and outside face reinforcing in the gaps of the top and bottom slabs. Place a band matching the outside face reinforcing of the wall in the gaps of the walls (placed in the outside face only). Tack weld the bands to the exposed reinforcing at each point of contact.

8 For vehicle safety, the following requirements must be met:

For structures without bridge rail, construct curbs no more than 3" above finished grade.

For structures with bridge rail, construct curbs flush with finished grade. Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

(9) Cement stabilized backfill between boxes is considered part of the box culvert for payment.

 $\underbrace{(0)}$ All curb concrete and reinforcing is considered part of the box culvert for payment.

Any additional concrete and reinforcing required for the closures will be considered subsidiary to the box culvert for payment.

(12) 1'-0" typical. 2'-3" when the Box Culvert Rail Mounting Details (RAC) standard sheet is referred to elsewhere in the plans.

(13) For multiple unit placement with overlay, with 1 to 2 course surface treatment, or with the top slab as the final riding surface, provide wall closure as shown in Detail "A".

(14) This dimension may be increased with approval of the Engineer to allow the precast boxes to be tunneled or jacked in accordance with Item 476, "Jacking, Boring, or Tunneling Pipe or Box". No payment will be made for any additional material in the gap between adjacent boxes.

MATERIAL NOTES:

(11)

Provide Grade 60 reinforcing steel

Provide ASTM A1064 welded wire reinforcement.

- Provide Class C concrete (fc = 3,600 psi) for the closures.
- Provide cement stabilized backfill meeting the requirements of Item 400,

"Excavation and Backfill for Structures."

Any additional concrete required for the closures will be considered subsidiary to the box culvert.

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications. Refer to the Single Box Culverts Precast (SCP) standard sheets for details and notes not shown.

Chamfer the bottom edge of the top slab closure 3 inches at culvert closure ends.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bars dimensions are out-to-out of bars.

HL93 LOADING

Texas Department of Transportation								
BOX CULVERTS								
	PRE	CAS	ST					
MISCELLANEOUS DETAILS								
		SC	CP-MD	1				
FILE: SCPMC	ists-20.dgn DN: C			WH/TxDOT	ск: GAF			
	ists-20.dgn D№: С иату 2020 сог	GAF		WH/TxDOT	ck: GAF HWAY			
CTxDOT Febru		GAF	CK: LMW DW: B	WH/TxDOT				
CTxDOT Febru	Jary 2020 cor	GAF NT SECT	CK: LMW DW: B	WH/TxDOT				

No warranty of any sibility for the conv <u>8</u> 2 Engine(TxDOT Texas DISCLAIMER: The use of this standard is governed by the find is made by TXDOT for any purpose what of this standard to other formats or for incorrect

DATE

1	Skew	=	(
\sim			1

2 At discharge end, chamfer may be

3 For 15° skew ~ 1" For 30° skew ~ 2" For 45° skew ~ 3"

(4) Quantities shown are for two Type PW-1 wings. Adjust concrete volume for Type PW-2 wings. To determine estimated quantities for two wings, multiply the tabulated values by Lw. Quantities shown do not include weight of Bars D.

¾" minimum.

- (5) Provide weepholes for Hw = 5'-0" and greater. Fill around weepholes with coarse gravel.
- (6) Extend Bars E2 1'-6" minimum into the wingwall footing.
- (7) Lap Bars M1 1'-6" minimum with Bars M2.
- $^{(8)}$ Place Bars G as shown, equally spaced at 8" maximum. Provide at least two pairs of Bars G per wing.

(9) 0" Min to 5'-0" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail or curbs taller than 1'-0, refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS Rails (T631-CM) standard sheet. Refer to the Box Culvert Rail Mounting Details (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

 $\underbrace{(10)}_{\cdot}$ For vehicle safety, the following requirements must be met: \cdot For structures without bridge rail, construct curbs no more

- than 3" above finished grade For structures with bridge rail, construct curbs flush with finished grade

Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

- (11) 1'-0" typical. 2'-3" when the Box Culvert Rail Mounting Details (RAC) standard sheet is referred to elswhere in the plans.
- (12) 3'-0" for Hw < 4'.
- (13) 6" for Hw < 4'.

DESIGNER NOTES:

Type PW-1 can be used for all applications and must be used if railing is to be mounted to the wingwall. Type PW-2 can only be used for applications without a railing mounted to the wingwall.

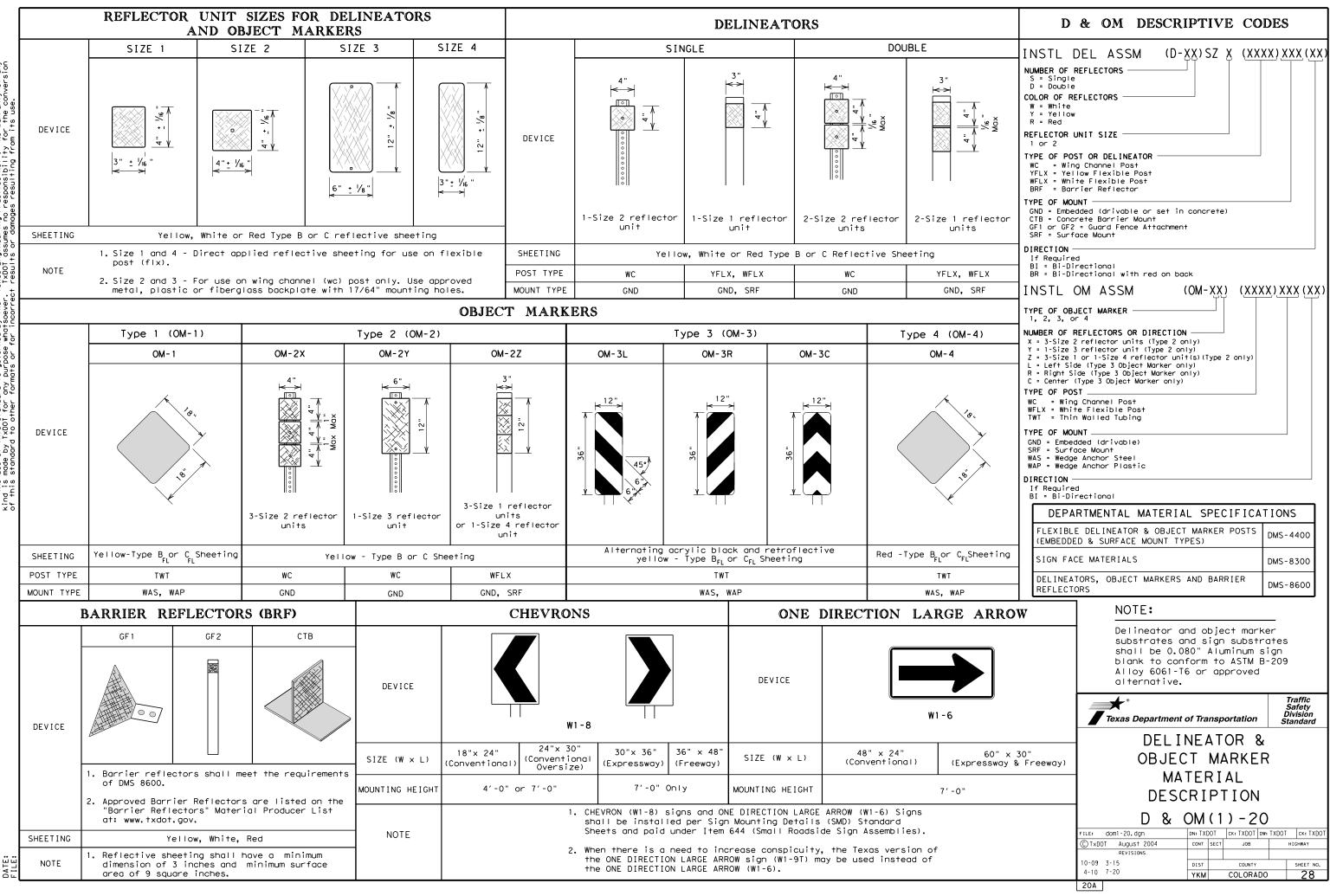
MATERIAL NOTES:

Provide Class C concrete (f'c=3.600 psi)

Provide Grade 60 reinforcing steel. Provide galvanized reinforing steel if required elsewhere in the plans.

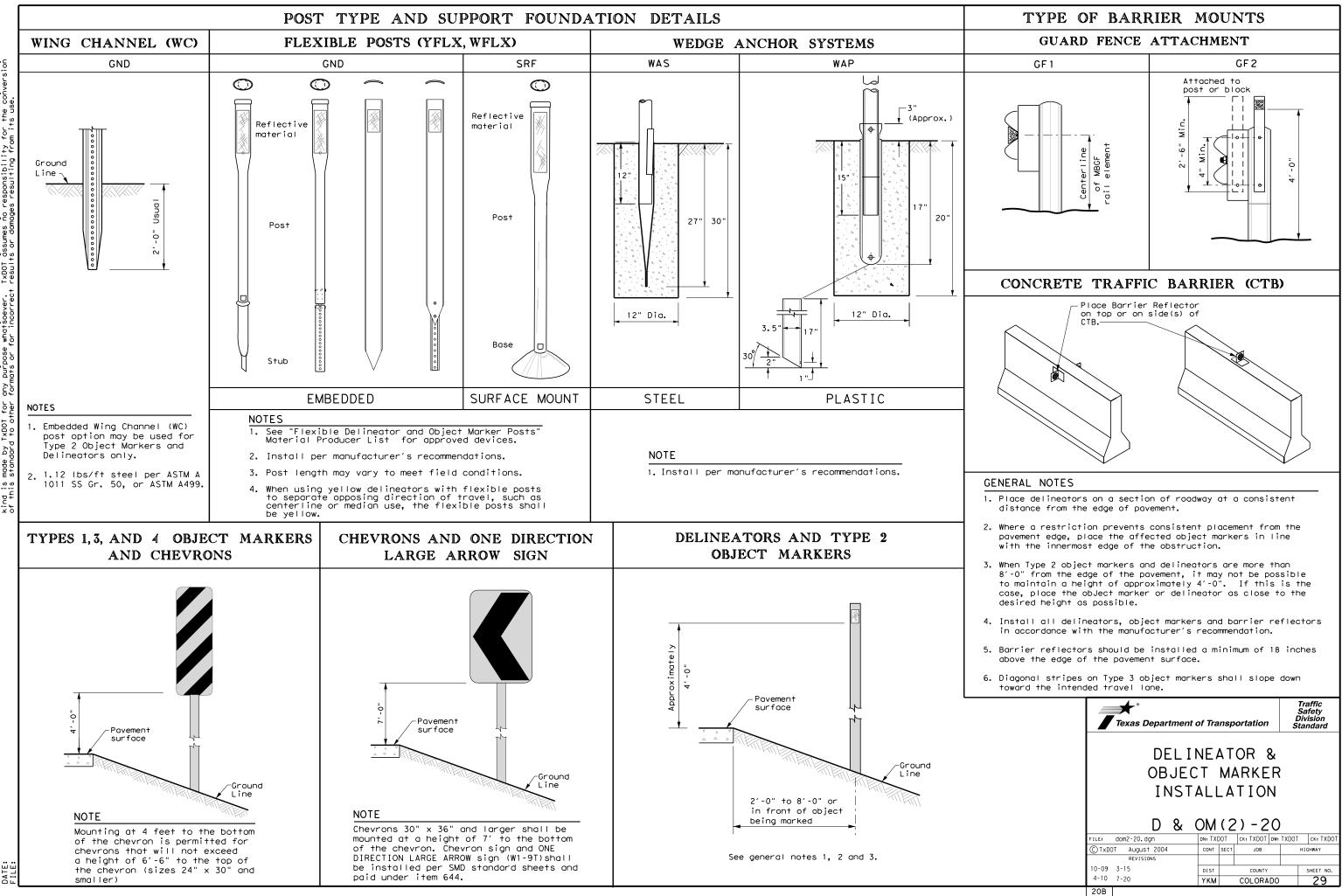
GENERAL NOTES:

Designed in accordance with AASHTO LRFD Bridge Design Specifications.


Depth of toewalls for wingwalls and culverts may be reduced or eliminated when founded on solid rock, when

directed by the Engineer. See Box Culvert Supplement (BCS) standard sheet for wingwall type and additional dimensions and information. Quantities for concrete and reinforcing steel

resulting from the formulas given on this sheet are for the Contractor's information only.


Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing dimensions are out-to-out of bars.

	★* Texas Department	of Tra	nsp	ortation	,	Di	idge vision andard	
(CONCRETE WINGWALLS							
V	VITH PARALL BOX C TYPES PW-	ULV	ER	TS	0	R		
				1 00-2				
				P	W			
FILE:	pwstde01-20.dgn	DN: GAF		ск: САТ	DW:	TxDOT	ск: TxDOT	
C TxDOT	February 2020	CONT	SECT	JOB		ŀ	IGHWAY	
	REVISIONS							
		DIST		COUNTY			SHEET NO.	
		YKM	C	OLORADO)		27	

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDD1 for any purpose whatsoever. TxDD1 assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

. V

this standard is governed by the "Texas Engineering Practice Act". No warranty of any TxD01 for any purpose whotsoever. TxD01 assumes no responsibility for the conversion d to other formats or for incorrect results or damages resulting from its use. ⁵D⁶ DISCLAIMER: The use of kind is mode

MINIMUM WARNING DEVICES AT CURVES WITH ADVICODY ODDEDC

	WITH	ADVISO	RY	SPEEDS
Amount by which Advisory Speed			Advi	sory Speed
is less than Posted Speed	(30 N	Turn 1PH or less:)	Curve (35 MPH or more)
5 MPH & 10 MPH	• RPMs			• RPMs
15 MPH & 20 MPH	 RPMs and Large Ar 	One Directi row sign	on	 RPMs and Chevrons; or RPMs and One Direction Large Arrow sign where geometric conditions or roadside obstacles prevent the installation of chevrons.
25 MPH & more	 RPMs and Large Arrigeometric roadside 	Chevrons; o One Directi row sign whe c conditions obstacles p allation of	on re or	• RPMs and Chevrons
SUGGES		ACING F RIZONT		DELINEATORS CURVES
ET.	NOTE ONE DIREC should be perpendic center i in approach	Extension centerlin tangent s approach CTION LARGE e located at cular to the he of the tan lane.	ARROW approcester approcester	the n of (W1-6) sign eximately and asion of the section of
(ON HOI	PACING RIZONTA		R CHEVRONS CURVES
Poin curv	ature	B B B	B	Point of tangent B B B C
		the point o		ir is installed gent in tangent

DE	LINE			ND CHE ING	EVR	ON		
WHEN	DEGRE	E OF CU	RVE	OR RADIUS	IS	KNOWN		Frw
				FEET				
egree	Radius	Spaci	ina	Spacing		Chevro		Frwy
of Curve	of	in		in		Spaci in	ng	
	Curve	Curv	/e	Straightaw	vay	Curv	e	Frwy
		Α		24		В		
1	5730	225		450			-	Acce
2 3	2865 1910	160		320 260		200	-	Lane
4	1433	11		280		200		Truc
5	1146	10		200		160		
6	955	9		180		160		
7	819	8	5	170		160		Brid
8	716	7	5	150		160		conc Bean
9	637	75	5	150		120		Dedi
10	573	7		140		120		
11	521	6		130		120		Conc or S
12	478	6		120		120		
13	441	6		120		120		Cabi
14 15	409 382	5		110		80 80		
16	358	5		110		80		
19	302	50		100		80		Guar
23	249	4		80		80		Head
			•					
29	198	3	5	70		40		
38 57 Jurve d Dacing Daced Sed du	151 101 elineat should at 2A. ring de	or appr includ This sp sign pr	0 de 3 paci	60 40 ch and dep delineat ng should pration or	ors be	40 40 40 re		Bric Rai Redu
38 57 Jurve d Dacing Daced Sed du	151 101 elineat should at 2A.	or appr includ This sp sign pr	0 0 de 3 paci	60 40 ch and dep delineat ng should pration or	ors be	40 40 40 re		Bric Rai Redu
38 57 Jurve d Dacing Daced Sed du	151 101 elineat should at 2A. ring de	or appr includ This sp sign pr	0 0 de 3 paci	60 40 ch and dep delineat ng should pration or	ors be	40 40 40 re		Brid Rai Redu Brid
38 57 Jurve d Dacing Daced Sed du	151 101 elineat should at 2A. ring de	or appr includ This sp sign pr	0 0 de 3 paci	60 40 ch and dep delineat ng should pration or	ors be	40 40 40 re		Brid Rai Brid
38 57 urve d baced sed du ne deg	151 101 should at 2A. ring de ree of	3 2 or apprilinclud This sp sign pr curve	0 0 de 3 paci repc is k	60 40 ch and dep delineat ng should pration or	ors be whe	40 40 40 re		Brid Rai Redu Brid
38 57 Jurve d bacing baced sed du he deg	151 101 elineat should at 2A. ring de ree of	3 2 or appr includ This sign sign pr curve	0 o de 3 paci repo is k A A C	60 40 ch and dep 5 delineat ng should bration or nown.	ors be whe EVI	40 40 40 re n		Brid Rai Redu Brid Cros Cros
38 57 Jurve d bacing baced sed du he deg DH	151 101 elineat should at 2A. ring de ree of ELINE	3 2 or appr includ This sign sign pr curve	0 0 coaci reportisk A C A C A C E O	60 40 th and depine of delineating should pration or shown.	ors be whe EVI	40 40 40 re n RON	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d bacing Saced du he deg DH WHEN E Advis Spee	151 101 elineat should at 2A. ring de ree of ELINE	3 2 or apprive includ This sign pr curve		60 40 th and depine of delineating should pration or snown.	ors be whe EVI	40 40 40 re n RON	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d bacing baced sed du ne deg DI WHEN [151 101 elineat should at 2A. ring de ree of ELINE	3 2 or appril includ This sign curve		60 40 th and dep of delineation of should aration or shown.	ors be whe EVI S NC Cr Sp	40 40 40 re n N XON	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing sed du ne deg DI WHEN D Advis Spee (MPH	151 101 elineat should at 2A. ring de ree of BLINE DEGREE ory Sp ed H) C	3 2 or appriline Includ This system sign pr curve		60 40 th and dep of delineation of should aration or shown.	ors be whe EVI S NC Cr Sp	40 40 40 re n N XON	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing seed du ne deg DH WHEN D Advis Spee (MPH	151 101 elineat should at 2A. ring de ree of BELINE DEGREE ory Sp ed 1) Ci	3 2 or apprivation including This sign product curve ATOR SP DF CURV acing in urve A 30		60 40 th and dep of delineation of should aration or snown.	ors be whe EVI S NC Cr Sp	40 40 40 re n N T KNO hevror bacing in Curve B 200	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing seed du ne deg DI WHEN D Advis Spee (MPH 65 60	151 101 elineat should at 2A. ring de ree of BELINE DEGREE ory Sp ed 1) Ci	A TOR SP Cor appril includ This sign curve		60 40 th and depressions of delineation of should pration or snown.	ors be whe EVI S NC Cr Sp	40 40 40 7 8 0 7 8 0 7 8 0 7 8 0 7 8 200 160	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d Dacing Saced Sed du ne deg DH WHEN D Advis Spee (MPH 65 60 55	151 101 elineat should at 2A. ring de ree of BLINE DEGREE ory Sp ed 1) Ci	A TOR SP Cor apprive Curve		60 40 th and depressions of delineation of should pration or snown.	ors be whe EVI S NC Cr Sp	40 40 40 70 80 80 80 80 91 KNO 90 10 90 10 10 10 10 10 10	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing seed du ne deg DH WHEN C Advis Spee (MPH 65 60 55 50	151 101 elineat should at 2A. ring de ree of BLINE DEGREE ory Sp ed 1) Ci	3 2 or apprivation including This sign product curve A TOR SP OF CURV acing in urve A 30 10 00 85		60 40 th and depression of delineation of delineatio of delineation of delineation of delineation of delineatio	ors be whe EVI S NC Cr Sp	40 40 40 70 80 80 80 80 91 80 91 80 92 90 160 160 160	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing sed du ne deg DI WHEN C Advis Spee (MPH 65 60 55 50 45	151 101 elineat should at 2A. ring de ree of BELINE DEGREE ory Sp ed 1) Ci	A TOR SP Cor appril includ This sign curve		60 40 th and deptors of delineation of should pration or snown. AND CHI PING R RADIUS I pacing in bightaway 2×A 260 220 200 170 150	ors be whe EVI S NC Cr Sp	40 40 40 70 80 80 80 80 91 80 91 80 92 90 160 160 160 120	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing sed du ne deg DI WHEN C Advis Spee (MPH 65 60 55 50 45 40	151 101 elineat should at 2A. ring de ree of BELINE DEGREE ory Sped t) Ci	A TOR SP Cor appril includ This sp sign pr curve		60 40 th and dep of delineation of should pration or snown. AND CHI PING R RADIUS I pacing in bightaway 2×A 260 220 200 170 150 140	ors be whe EVI S NC Cr Sp	40 40 40 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 9 7	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing sed du ne deg DI WHEN C Advis Spee (MPH 65 60 55 50 45 40 35	151 101 elineat should at 2A. ring de ree of BELINE DEGREE ory Sped 1) Ci	A TOR SP Cor appril includ This sign curve		60 40 th and deptors of delineation of should pration or snown. AND CHI PING R RADIUS I pacing in bightaway 2×A 260 220 200 170 150 140 120	ors be whe EVI S NC Cr Sp	40 40 40 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 9 7 8 9 7 9 7	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d pacing sed du ne deg DI WHEN C Advis Spee (MPH 65 60 55 50 45 40	151 101 elineat should at 2A. ring de ree of BELINE DEGREE to ory Sp ed t) C. 1) 1 1 1 1 1 1 1	3 2 or appliting including This sign production curve ATOR SP OF CURV DF CURV DC ing in Jorve SI A 30 10 00 85 70 60		60 40 th and dep of delineation of should pration or snown. AND CHI PING R RADIUS I pacing in bightaway 2×A 260 220 200 170 150 140	ors be whe EVI S NC Cr Sp	40 40 40 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 0 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 9 7	,	Brid Rai Redu Brid Cros Cros
38 57 Jurve d bacing Saced sed du ne deg DI MHEN D Advis Spee (MPH 65 60 55 50 40 35 30	151 101 elineat should at 2A. ring de ree of BELINE DEGREE ory Sped t) C 1 1 1 1 1 1 1 1 1 1 1	3 2 or apprivation inclustry This sign production sign production curve A TOR SP DF CURV acing in urve SP A 30 10 00 85 70 60 55		60 40 th and dep of delineation of g should pration or snown. END CHI PING R RADIUS I pacing in bightaway 2×A 260 220 200 170 150 140 120 110	ors be whe EVI S NC Cr Sp	40 40 40 7 8 0 7 8 0 7 8 0 7 8 0 7 8 7 8 7 8 7	,	Brid Rai Redu Brid Cros Cros

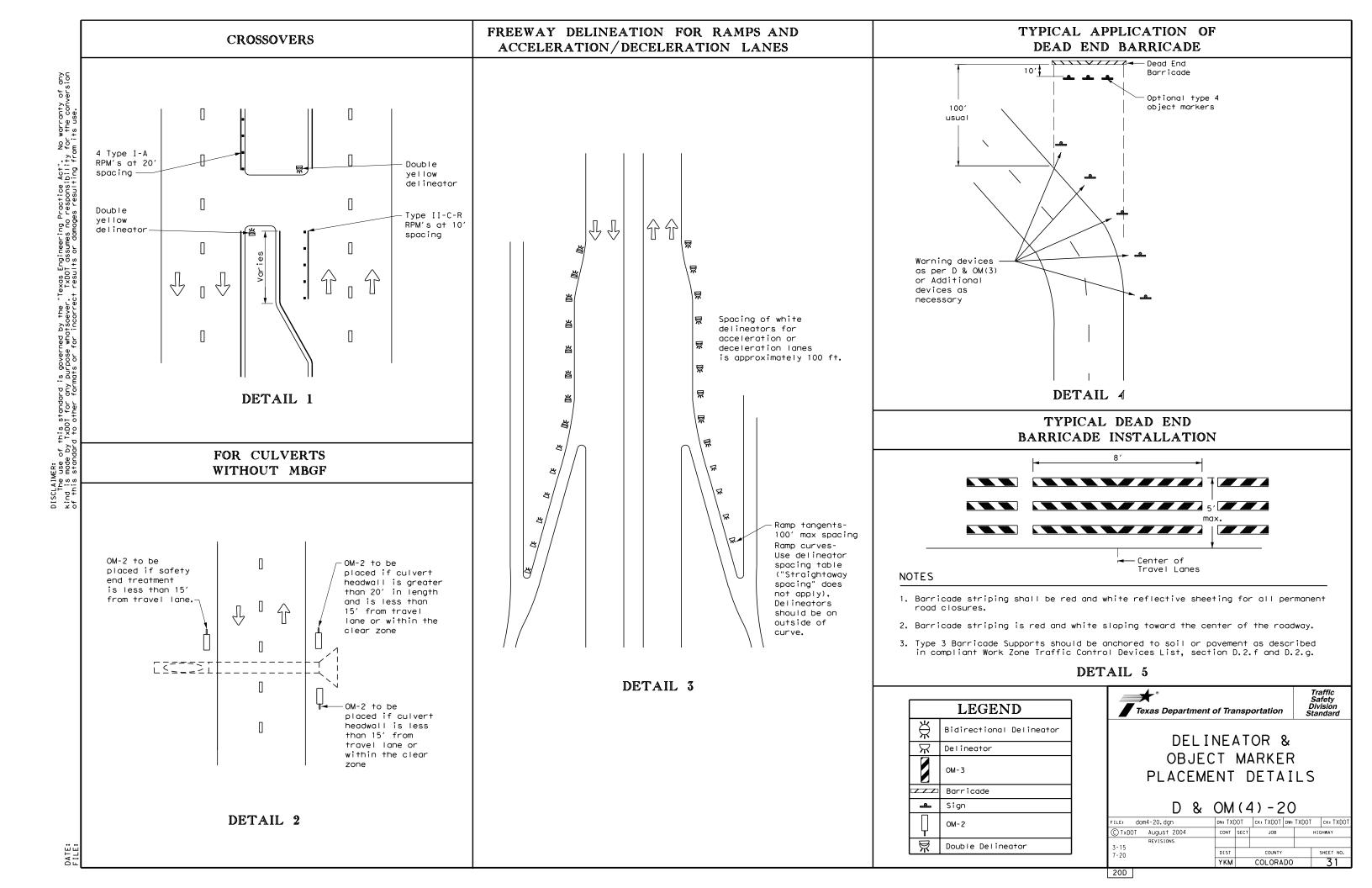
delineator spacing may be determined based on the Advisory Speed of the curve. Use the delineator curve spacing for each Advisory Speed (MPH).

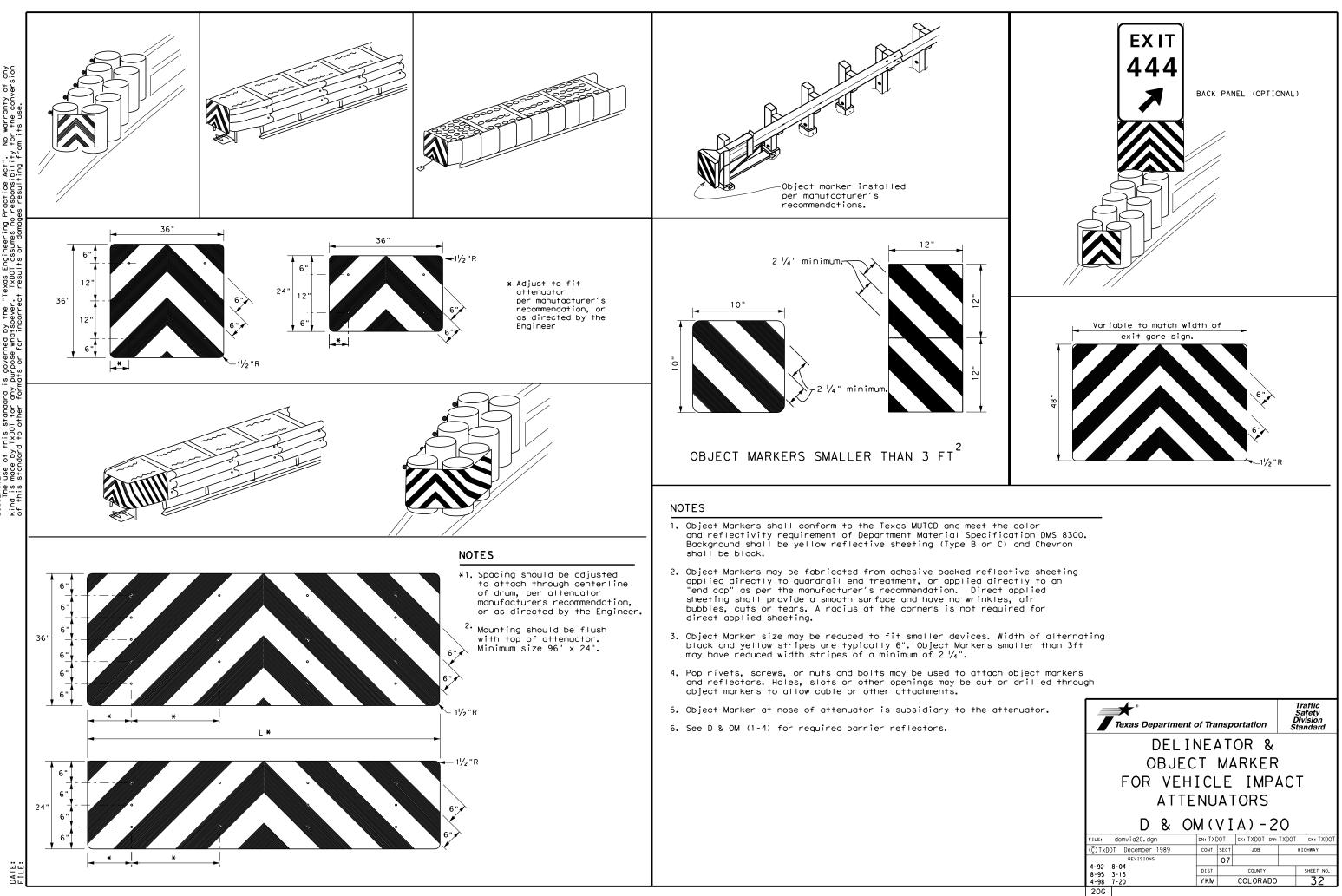
DELINEATOR AN	ND OBJECT MARKER APPLI	CATION AND SPACING
CONDITION	REQUIRED TREATMENT	MINIMUM SPACING
Frwy./Exp. Tangent	RPMs	See PM-series and FPM-series standard sheets
Frwy./Exp. Curve	Single delineators on right side	See delineator spacing table
Frwy/Exp.Ramp	Single delineators on at least one side of ramp (should be on outside of curves) (see Detail 3 on D&OM(4))	100 feet on ramp tangents Use delineator spacing table for ramp curves ("straightway spacing" does not apply to ramp curves)
Acceleration/Deceleration Lane	Double delineators (see Detail 3 on D&OM(4))	100 feet (See Detail 3 on D & OM (4))
Truck Escape Ramp	Single red delineators on both sides	50 feet
Bridge Rail (steel or concrete)and Metal Beam Guard Fence	Bi-Directional Delineators when undivided with one lane each direction Single Delineators when multiple lanes each direction	Equal spacing (100'max) but not less than 3 delineators
Concrete Traffic Barrier (CTB) or Steel Traffic Barrier	Barrier reflectors matching the color of the edge line	Equal spacing 100' max
Cable Barrier	Reflectors matching the color of the edge line	Every 5th cable barrier post (up to 100'max)
Guard Rail Terminus/Impact Head	Divided highway - Object marker on approach end Undivided 2-lane highways - Object marker on approach and departure end	Requires reflective sheeting provided by manufacturer per D & OM (VIA) or a Type 3 Object Marker (OM-3) in front of the terminal end See D & OM (5) and D & OM (6)
Bridges with no Approach Rail	Type 3 Object Marker (OM-3) at end of rail and 3 single delineators approaching rail	See D & OM(5)
Reduced Width Approaches to Bridge Rail	Type 2 and Type 3 Object Markers (OM-3) and 3 single delineators approaching bridge	Requires reflective sheeting provided by manufacturer per D & OM (VIA) or a Type 3 Object Marker (OM-3) in front of the terminal end See D & OM (5)
Culverts without MBGF	Type 2 Object Markers	See Detail 2 on D & OM(4)
Crossovers	Double yellow delineators and RPMs	See Detail 1 on D & OM (4)
Pavement Narrowing (lane merge) on Freeways/Expressway	Single delineators adjacent to affected lane for full length of transition	100 feet
NOTEC		

NOTES

- or barrier reflectors are placed.

3. Single red delineators may be mounted on the back side of delineator posts for wrong way driver applications


LEGEND						
Bi-directio Delineator						
Delineator						
Sign						


DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDOT for any purpose whatsoever. TxDOT assumes no responsibility for the conversion

1. Unless indicated otherwise, the delineator or barrier reflector color shall conform to the color of the pavement edge line on the side of the road where the delineators

2. Barrier reflectors may be used to replace required delineators.

	Texas Department	of Tra	nsp	ortation	Si Di	raffic afety vision undard
ona I	DELI OBJEC PLACEME D & 0	CT ENT	М <i>4</i> [ARKE DETA	R ILS	
			()) - 2	U	
	FILE: dom3-20.dgn	dn: TXI	TOC	ск: TXDOT	DW∶TXDOT	ск: TXDOT
	© TxDOT August 2004 REVISIONS	CONT	SECT	JOB	н	IGHWAY
	3-15 8-15	DIST		COUNTY		SHEET NO.
	8-15 7-20	YKM		COLORA	DO	30
	200					

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDD1 for any purpose whatsoever. TxDD1 assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

I. STORMWATER POLLUTION	I PREVENTION-CLEAN WATER	ACT SECTION 402	III. CULTURAL RESOURCES		VI. HAZARDOL
TPDES TXR 150000: Stormwo	ater Discharge Permit or Const	ruction General Permit		fications in the event historical issues or	General (c Comply with the
· · · · · ·	h 1 or more acres disturbed s act for erosion and sedimentat		archeological artifacts are f archeological artifacts (bone	ound during construction. Upon discovery of s, burnt rock, flint, pottery, etc.) cease	hazardous mater making workers
-	t may receive discharges from fied prior to construction ac	· •	work in the immediate area and	d contact the Engineer immediately.	provided with p Obtain and keep
	fred prior to construction de	rivities.	🔀 No Action Required	Required Action	used on the pro
1.			Action No.		Paints, acids, compounds or ac
2.	_		1.		products which
No Action Require	d 🛛 🛛 Required Action				Maintain an ade In the event of
Action No.			2.		in accordance w immediately. Tr
 Prevent stormwater pol accordance with TPDES 	llution by controlling erosion Permit TXR 150000	n and sedimentation in	3.		of all product
2. Comply with the SW3P of	and revise when necessary to a	control pollution or	4.		Contact the Eng * Dead or c
required by the Engine	eer.		IV. VEGETATION RESOURCES		* Trash pil * Undesirat
	e Notice (CSN) with SW3P infor		Preserve native vegetation to	the extent practical.	* Evidence
4. When Contractor projec	to the public and TCEQ, EPA or ct specific locations (PSL's)	increase disturbed soil	Contractor must adhere to Con 164, 192, 193, 506, 730, 751,	struction Specification Requirements Specs 162, 752 in order to comply with requirements for	Does the pro- replacement Yes
	re, submit NOI to TCEQ and the	-		landscaping, and tree/brush removal commitments.	If "No", +
II. WORK IN OR NEAR STE ACT SECTIONS 401 AM	REAMS, WATERBODIES AND W ND 404	VEILANDS CLEAN WATER	🔀 No Action Required	Required Action	If "Yes", th Are the rest
	or filling, dredging, excavat reeks, streams, wetlands or w		Action No.		Yes
	ere to all of the terms and c		1.		If "Yes", the notific
the following permit(s)	:		2.		activities 15 working
_			3.		_
No Permit Required	- PCN not Required (less that	1/10th core weters or			If "No", th scheduled de
wetlands affected)	- FCN HOT Required (Tess Hidi	T TYTOTH UCLE WITHERS OF	4.		In either co activities of
🗌 Nationwide Permit 14	- PCN Required (1/10 to <1/2	acre, 1/3 in tidal waters)			asbestos co
🗌 Individual 404 Permit	t Required			D THREATENED, ENDANGERED SPECIES,	Any other ev on site. He
Other Nationwide Perm	nit Required: NWP#		CRITICAL HABITAT, STATE AND MIGRATORY BIRDS.	LISTED SPECIES, CANDIDATE SPECIES	
	aters of the US permit applie t Practices planned to contro		🛛 No Action Required	Required Action	Action No
1.			Action No.		2.
2.			1.		3.
3.			2.		VII. OTHER E
					(include:
4.			3.		
	inary high water marks of any aters of the US requiring the he Bridge Layouts.	•	4.		Action No
Best Management Pract	tices:		-	observed, cease work in the immediate area, t and contact the Engineer immediately. The	1.
Erosion	Sedimentation	Post-Construction TSS	work may not remove active nests	from bridges and other structures during cidted with the nests. If caves or sinkholes	2.
🔀 Temporary Vegetation	🗙 Silt Fence	Vegetative Filter Strips	are discovered, cease work in the	e immediate area, and contact the	3.
Blankets/Matting	🗙 Rock Berm	Retention/Irrigation Systems	Engineer immediately.		
Mulch	🗌 Triangular Filter Dike	Extended Detention Basin			-
Sodding	Sand Bag Berm	Constructed Wetlands	LIST OF	ABBREVIATIONS	
Interceptor Swale Diversion Dike	Straw Bale Dike	☐ Wet Basin ☐ Erosion Control Compost	BMP: Best Management Practice CGP: Construction General Permit	SPCC: Spill Prevention Control and Countermeasure SW3P: Storm Water Pollution Prevention Plan	
Erosion Control Compost	Erosion Control Compost	Mulch Filter Berm and Socks	DSHS: Texas Department of State Health Serv	vices PCN: Pre-Construction Notification	
X Mulch Filter Berm and Sock			FHWA: Federal Highway Administration MOA: Memorandum of Agreement	PSL: Project Specific Location TCEQ: Texas Commission on Environmental Quality	
	ocks 🗌 Compost Filter Berm and Soc		MOU: Memorandum of Understanding MS4: Municipal Separate Stormwater Sewer S	TPDES: Texas Pollutant Discharge Elimination System System TPWD: Texas Parks and Wildlife Department	
		Sand Filter Systems	MBTA: Migratory Bird Treaty Act NOT: Notice of Termination	TxDOT: Texas Department of Transportation T&E: Threatened and Endangered Species	
	Sediment Basins	🗌 Grassy Swales	NMP: Nationwide Permit NOI: Notice of Intent	USACE: U.S. Army Corps of Engineers USFWS: U.S. Fish and Wildlife Service	

JS MATERIALS OR CONTAMINATION ISSUES

upplies to all projects):

e Hazard Communication Act (the Act) for personnel who will be working with rials by conducting safety meetings prior to beginning construction and aware of potential hazards in the workplace. Ensure that all workers are personal protective equipment appropriate for any hazardous materials used. to on-site Material Safety Data Sheets (MSDS) for all hazardous products bject, which may include, but are not limited to the following categories: solvents, asphalt products, chemical additives, fuels and concrete curing dditives. Provide protected storage, off bare ground and covered, for may be hazardous. Maintain product labelling as required by the Act.

equate supply of on-site spill response materials, as indicated in the MSDS. f a spill, take actions to mitigate the spill as indicated in the MSDS, with safe work practices, and contact the District Spill Coordinator ne Contractor shall be responsible for the proper containment and cleanup spills.

gineer if any of the following are detected: distressed vegetation (not identified as normal) es, drums, canister, barrels, etc.)le smells or odors of leaching or seepage of substances

ject involve any bridge class structure rehabilitation or 6 (bridge class structures not including box culverts)?

X No

hen no further action is required. hen TxDOT is responsible for completing asbestos assessment/inspection.

ults of the asbestos inspection positive (is asbestos present)?

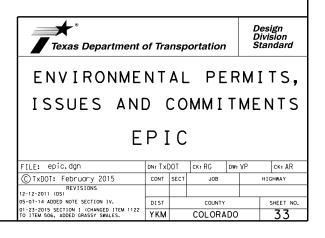
No No

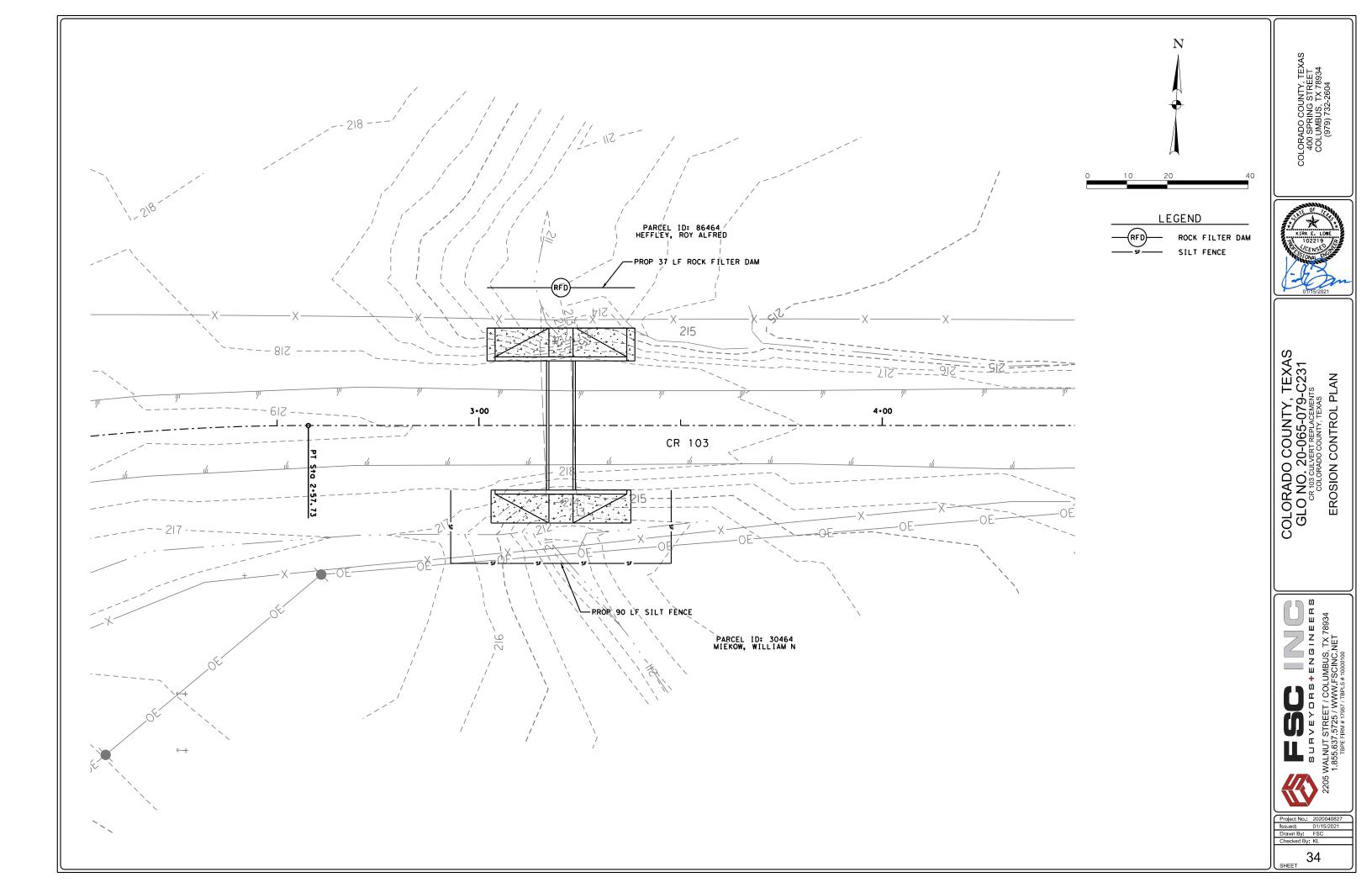
then TxDOT must retain a DSHS licensed asbestos consultant to assist with ation, develop abatement/mitigation procedures, and perform management as necessary. The notification form to DSHS must be postmarked at least days prior to scheduled demolition.

nen TxDOT is still required to notify DSHS 15 working days prior to any emolition.

ase, the Contractor is responsible for providing the date(s) for abatement and/or demolition with careful coordination between the Engineer and nsultant in order to minimize construction delays and subsequent claims.

vidence indicating possible hazardous materials or contamination discovered azardous Materials or Contamination Issues Specific to this Project:


tion Required 🗌 Required Action


NVIRONMENTAL ISSUES

regional issues such as Edwards Aquifer District, etc.)

tion Required

Required Action

		1
A. <u>GENERAL SITE DATA</u>	B. EROSION AND SEDIMENT CONTROLS	C.
1. <u>PROJECT LIMITS</u> : CR 103 at Tributary to Skull Creek Begin Project Coordinates : Latitude (N): 29° 36′ 51.35″ Longitude (W): -96° 32′ 33.11″ PROJECT LOCATION SHOWN ON THE TITLE SHEET (SHEET 1)	1. SOIL STABILIZATION PRACTICES: (Select T = Temporary or P = Permanent, as applicable)	1. <u>MAINTENANCE:</u> Maintain all ero. necessary clean rain event, but dried sufficien for not adhering
 2. PROJECT SITE MAPS: Project Location Map: Title Sheet Drainage Patterns: Culvert Plan & Profiles (Sheet 20) Slopes Anticipated After Major Gradings or Areas of Soll Disturbance: Typical Sections (Sheet 5) Location of Erosion and Sediment Controls: SW3P Site Maps (Sheet 34) Surface Waters and Discharge Locations: Drainage and Culvert Layouts (Sheet 20) Project Specific Location(s) (PSL): To be determined by the project Construction Personnel. Location(s) shown on SW3P Site Map (If PSL location(s) is within one mile of project) and information located in project SW3P Binder (Reference Item *IO below). 3. PROJECT DESCRIPTION: CULVERT REPLACEMENTS WITH ROADWAY REHABILITATION 		or temporarily of disturbed portion 2. <u>INSPECTION:</u> A TxDOT Inspe- An Inspection an filed for each in the current Field 3. <u>WASTE MATERIALS:</u> On a daily basi construction sit and local city si or as may be d construction pro-
 4. <u>MAJOR SOIL DISTURBING ACTIVITIES:</u> Install controls down-slope of work area and initiate inspection and maintenance activities. Begin phased contruction with interim stabilization practices. Adjust erosion and sedimentation controls during construction to meet requirements and changing conditions and as directed/approved by the Engineer. Soil disturbing activities will include widening, grading, excavation, embankment for roadway widening, construction of drainage structures and retaining walls. 5. <u>EXISTING CONDITION OF SOIL & VEGETATIVE</u> COVER AND % OF EXISTING VEGETATIVE COVER: Description of existing vegetative cover: Heavy Native Grass and Trees Description of soils: Silty sands (SM), medium dense, light brown with clay pockets fat clays (CH), firm, gray light brown, ferrous nodules. Percentage of existing vegetative cover: 60%	 SEDIMENT TRAPS SEDIMENT BASINS STORM INLET SEDIMENT TRAP STOR OUTLET STRUCTURES CURBS AND GUTTERS STORM SEWERS VELOCITY CONTROL DEVICES OTHER: NOTE: TOP OF BMP'S SHOULD NOT BE HIGHER THAN ROADWAY ELEVATION AS NOT TO FLOOD ROADWAY UNLESS PRIOR APPROVAL FROM ENGINEER IS OBTAINED. 3. STORM WATER MANAGEMENT: 	 <u>HAZARDOUS WASTE &</u> As a minimum, Paints, Acids, Concrete Curing or at a Project spillage of thes <u>SANITARY WASTE:</u> Use a licensed units as may be CONSTRUCTION VEHI
Percentage of existing vegetative cover: 60%. Existing vegetative cover: Heavy 6. TOTAL PROJECT AREA: 0.25 Acres 7. TOTAL AREA TO BE DISTURBED: 0.25 Acres (100.0 %)	 A. Storm water drainage will be provided by ditches, culverts, and storm water systems which carry drainage within the R.O.W. to the lows within the roadway and project site which drains to natural facilities. B. Other permanent erosion controls include hydraulic design to limit structure outlet velocities and grading design generally consisting of 4 : I or flatter slopes with permanent vegetative cover or concrete swales with energy dissapators for steeper slopes. 4. STORM WATER MANAGEMENT ACTIVITIES: (Sequence of Construction) <u>Pre-construction:</u> Rock filter dams and erosion control logs across ditches and culvert outfalls. 	On a regular b construction en available on a on project, abu 7. <u>MANAGEMENT PRACTI</u> A. Construct di control the amou wetland, water B. Locate cons
 8. <u>WEIGHTED RUNOFF COEFFICIENT</u> BEFORE CONSTRUCTION: 0.60 AFTER CONSTRUCTION: 0.60 9. <u>NAME OF RECEIVING WATERS:</u> SKULL CREEK (Provide Segment Numbers) 	<u>During construction:</u> Silt fence along row that will minimize the amount of sediment that may sheet flow off of txdot row. <u>Post construction:</u> Backfill pavement widening.	the runoff of , C. When worki, controls at all t D. Clear all wo matting, falsev that are not a p E. Procedures F. Sediment to construction ac
 10. PROJECT SW3P Binder: A. For projects disturbing one to five acres, TxDOT will maintain a SW3P Binder at the project field office (If there is not a project field office, should be kept at the Area Office) which contains the following: Index Sheet, TCEQ Signature Authority, TxDOT's and Contractor's Small Construction Site Notice, SW3P Inspector Qualification Statements, EPIC Sheet, SW3P Sheet, Site Location Maps, Inspection and Maintenance Reports (Form 2118), Construction Stage Gate Checklist(s) (CSGC), Stored Material Lists specifying associated control measures and the Appendix which contains the TPDES Construction General Permit, TxDOT and Contractor MS4 Operator Notification(s) and the Construction PSL Permits per all applicable requirements. B. For projects disturbing 5 acres or more, TxDOT and Contractor Notice Of Intent (N.O.I.) and Fee Payment Form, TxDOT and Contractor Large Construction Site Notice), and TPDES Permit Coverage Notice. C. For projects disturbing less than one acre, actions described in (IO.A.) and (IO.B.) above are not required. Acreage is calculated by adding Total Area To Be Disturbed Acres on project (See *7 above) and the PSL(s) acreage located within one mile of project. 	5. NON-STORM WATER DISCHARGES: Filter non-storm water discharges, or hold in retention basins, before being allowed to mix with storm water. These discharges consist of, but not ilmited to, non-polluted ground water, spring water, foundation or footing drain water, water used for dust control or pavement washing and vehicle washwater containing no detergents.	KIRK E. LO OZZIS CENSO Signature of Registr

. OTHER REQUIREMENTS & PRACTICES

erosion and sediment controls in good working order. Perform any eaning/repairs/replacements at the earliest possible date prior to next but no later than 7 calendar days, Ensure the surrounding ground has iently to prevent damage from equipment. "Too Wet" is the only reason ing to timeframes described. When construction activities permanently y cease and are not expected to resume for 14 or more days on a rtion of the site, stabilization measures must be initiated immediately.

spector will perform a regularly scheduled SW3P inspection every 7 calendar days. and Maintenance Report, signed by the TxDOT Inspector and the Contractor, will be th inspection. Revise/clean/repair/replace each BMP control device in accordance with ield Inspection and Maintenance Report (Form 2118) and Item I (Maintenance) above.

asis, or as may be directed, collect all waste materials, trash and debris from the site and deposit into a metal dumpster having a secure cover and which meets all state solid waste management requirements. Empty the dumpster as required by regulation, directed, at a local approved landfill site. Do not bury construction waste on the project site.

& SPILL REPORTING:

m, any products in the following categories are considered to be hazardous: s, Solvents, Fuels, Asphalt Products, Chemical Additives for Soil Stabilization, and ing Compounds or Additives. When storing hazardous material on the project site, ect Specific Location, take all practicable precaution to prevent and/or contain any nese materials. In the event of a spill, contact the spill coordinator immediately.

ed sanitary waste management contractor to collect all sanitary waste from portable be required by local regulation, or as directed.

HICLE TRACKING:

basis, or as may be directed, dampen haul roads for dust control and construct entrances/exits. Provide for a motorized broom or vacuum type sweeper to be a daily basis, or as may be directed, to remove sediment from paved roadways butting and traversing the project site.

TICES:

disposal areas, stockpiles, haul roads and PSL's in a manner that will minimize and nount of sediment that may enter receiving waters. Do not locate disposal areas in any erbody or streambed.

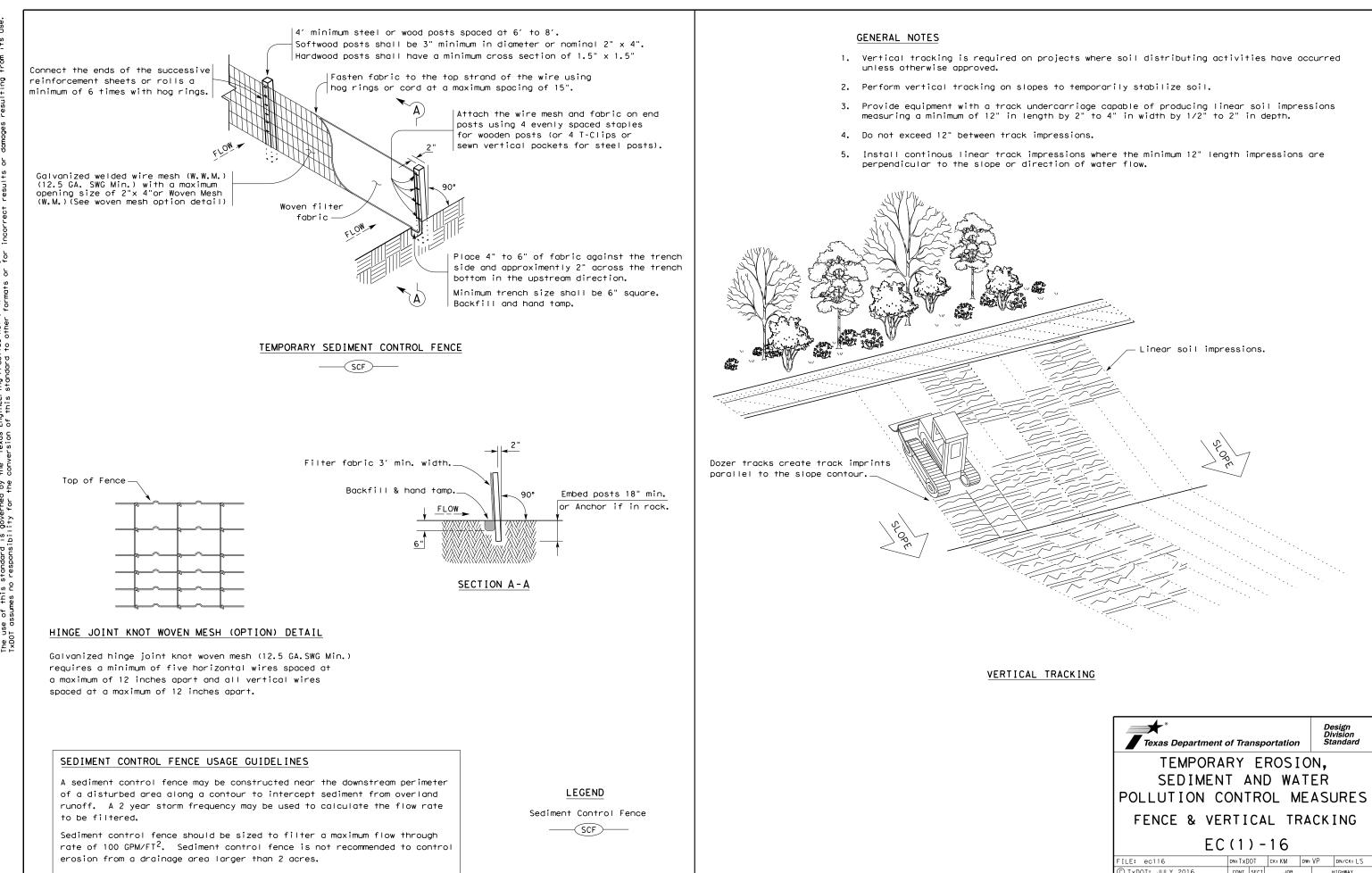
nstruction staging areas, vehicle maintenance and PSL's areas in a manner to minimize pollutants.

king in or near a wetland, install and maintain operating soil erosion and sediment I times during construction and isolate the work from the wetland.

waterways as soon as practicable of temporary embankment, temporary bridges, sework, piling, debris or other obstructions placed during construction operations part of the finished work.

es and/or practices should be taken to control dust.

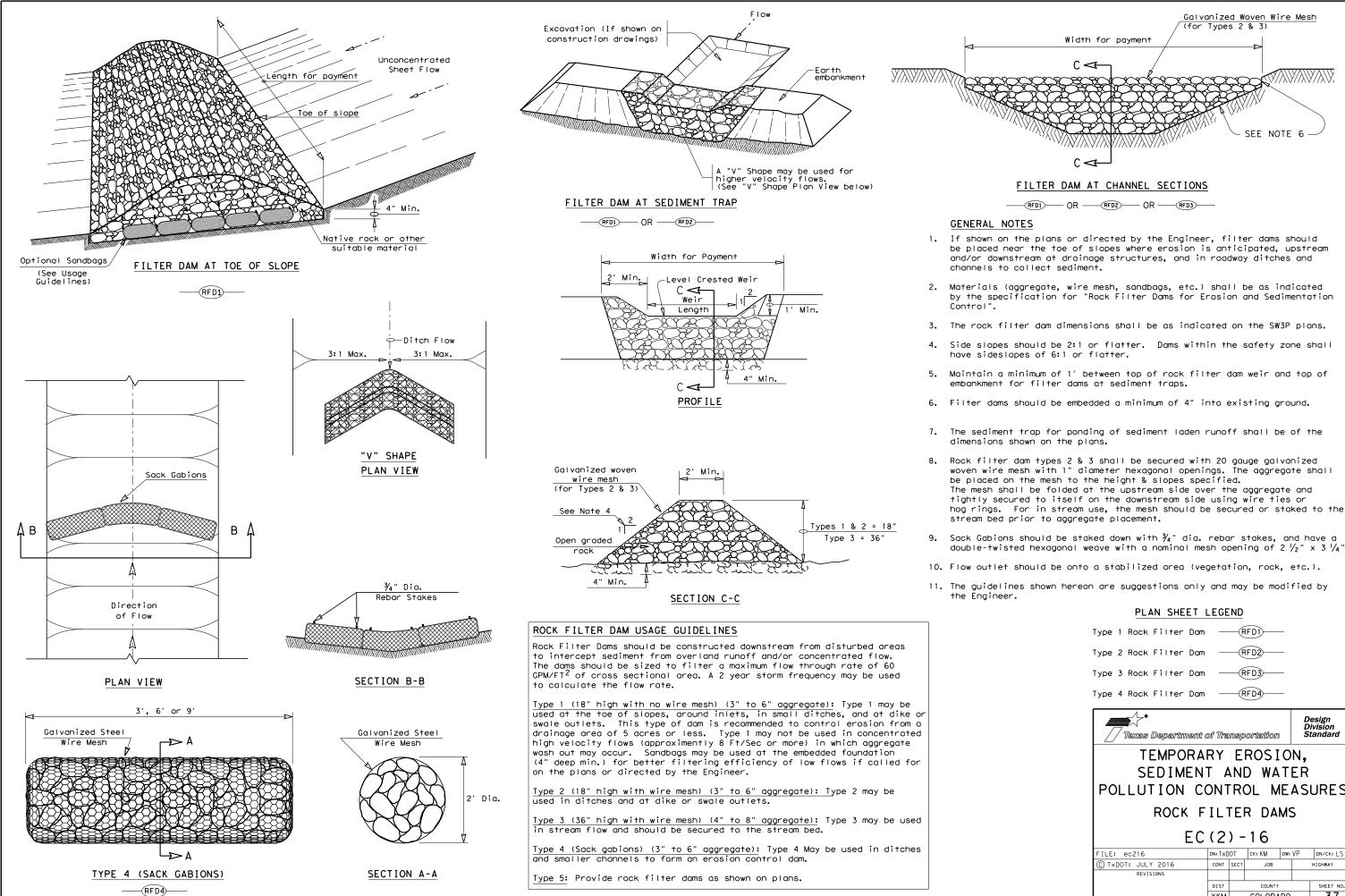
to be removed from roadways daily or when work begins after weather events if activities have ceased due to weather event.

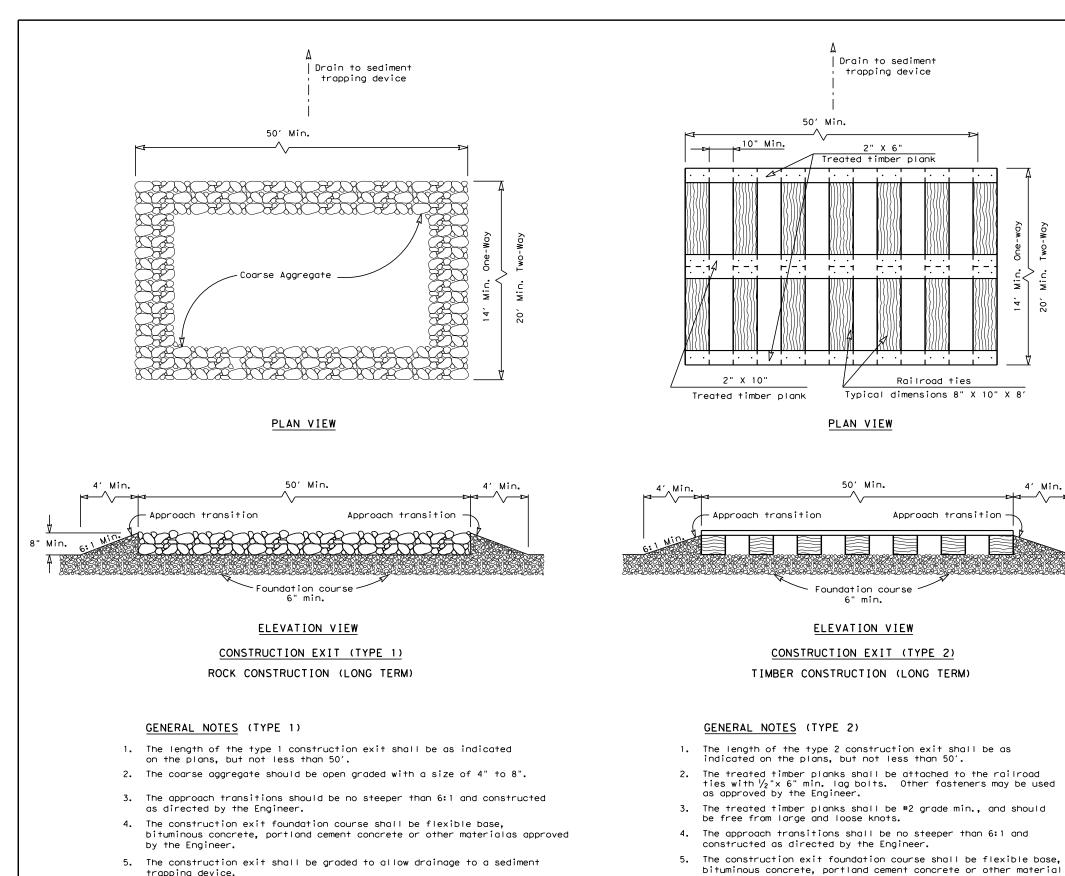


P.E.01/15/2021 Signature of Registrant & Date

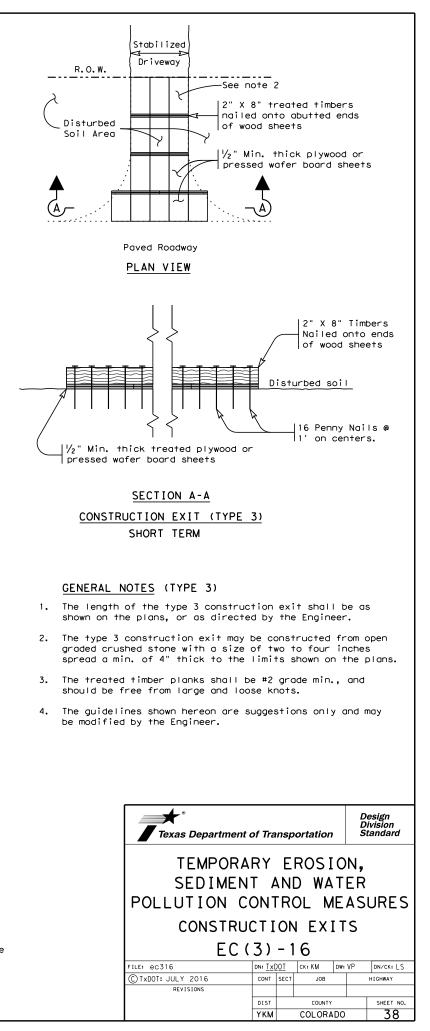
Texas Department of Transportation (C) 2018

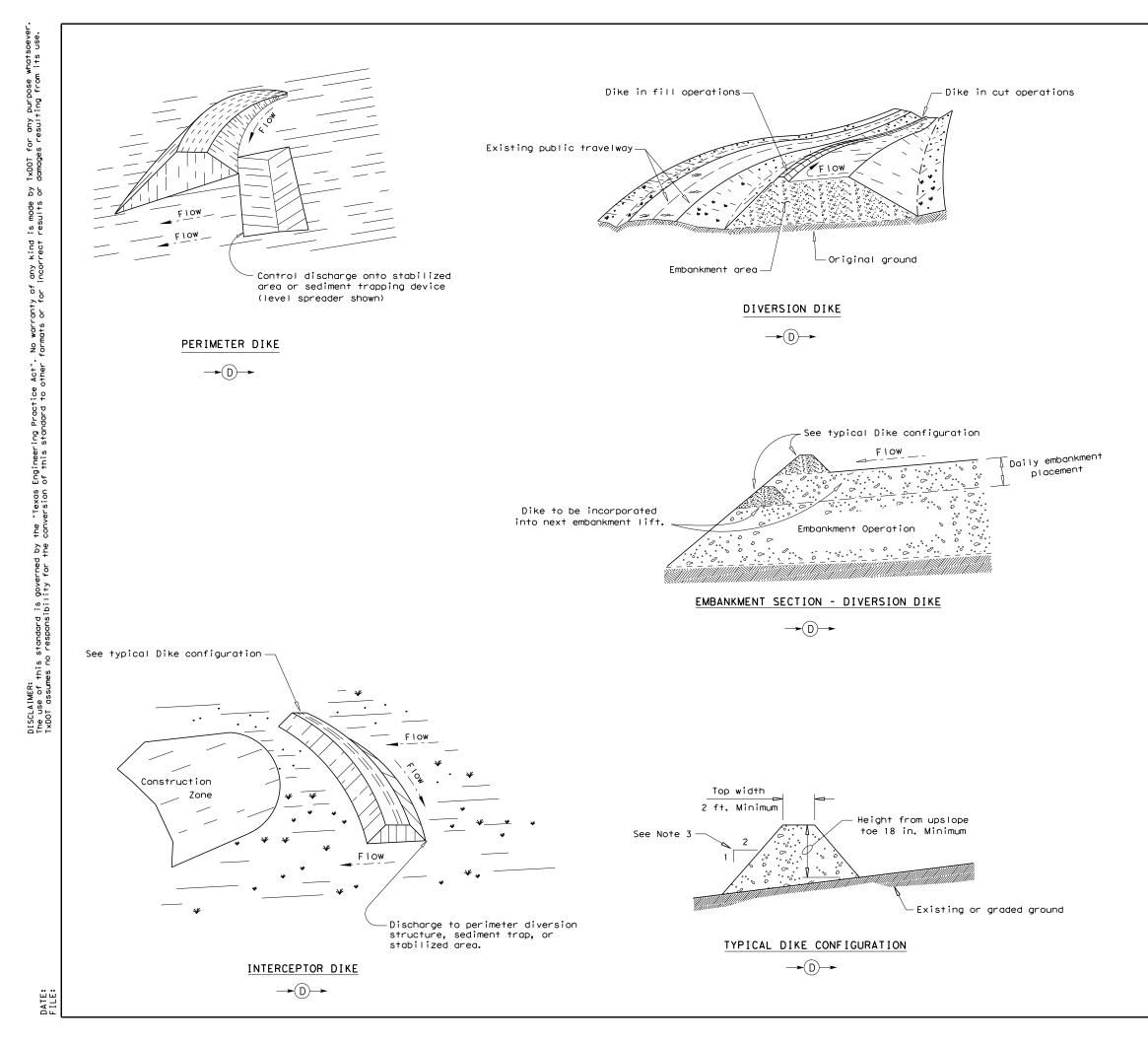
STORM WATER POLLUTION PREVENTION PLAN (SW3P)


	TEMPLATE	REVISION	N DATE: 02/07/18					
DESIGN	FED.RD. DIV.NO.	FEDER	FEDERAL AID PROJECT NO.					
GRAPHICS								
	STATE	DISTRICT	COUNTY	SHEET NO.				
CHECK	TEXAS	YKM	COLORADO					
CHECK	CONTROL	SECTION	JOB	35				
				1				


DATE

Texas Department of Transportation					Design Division Standard		
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES							
FENCE & VERTICAL TRACKING							
EC(1)-16							
FILE: ec116	DN: Tx[DOT	ск: КМ	DW: \	/P	DN/CK: LS	
C TxDOT: JULY 2016	CONT SECT JOB HIGHWAY						
REVISIONS							
	DIST COUNTY SHEET I					SHEET NO.	
	YKM COLORADO 36						

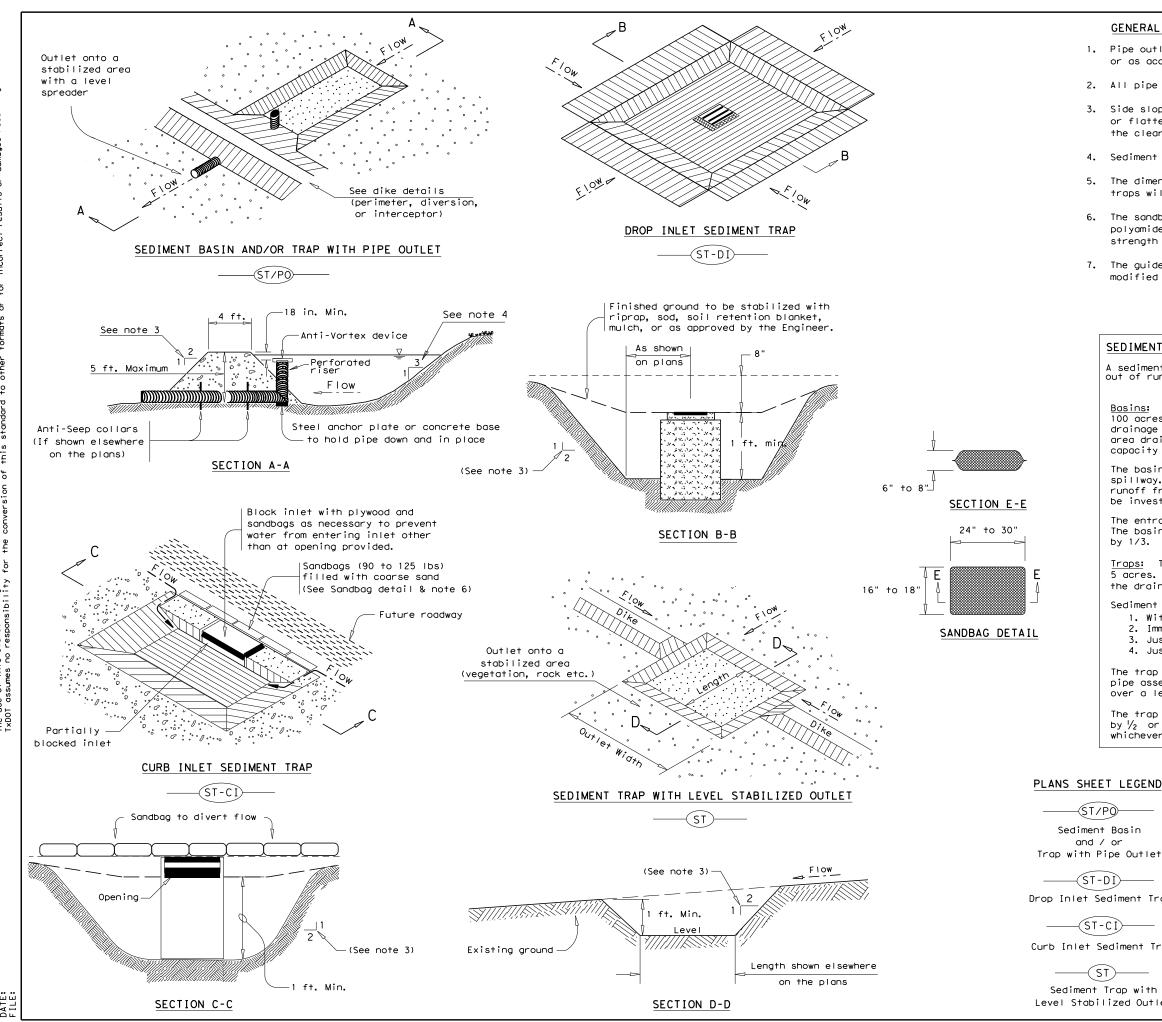



Type 1 Rock Filter Dom		—(R	FD1				
Type 2 Rock Filter Dam		-R	FD2	_			
Type 3 Rock Filter Dam		-R	FD3	_			
Type 4 Rock Filter Dam		-R	FD4	-			
/ Texas Department d	of Trai	nsp	ortation		Di	esign vision andard	
TEMPORARY EROSION,							
SEDIMEN					•		
POLLUTION CO	ЭΝТ	R	DL M	E.	ASI	JRES	
ROCK F	ILT	Ē	R DAI	MS	5		
EC(2)-16							
FILE: ec216	DN: TxD(DT	ск: КМ	DW:	VP	DN/CK: LS	
C TxDOT: JULY 2016	CONT SECT JOB HIGHWAY					HIGHWAY	
REVISIONS							
	DIST COUNTY					SHEET NO.	
	YKM		COLORA	DO		37	

- The guidelines shown hereon are suggestions only and may be modified by the Engineer.
- 7. Construct exits with a width of at least 14 ft. for one-way and 20 ft. for two-way traffic for the full width of the exit, or as directed by the engineer.

- as approved by the Engineer.6. The construction exit should be graded to allow drainage to a sediment trapping device.
- 7. The guidelines shown hereon are suggestions only and may be modified by the Engineer.
- 8. Construct exits with a width of at least 14 ft. for one-way and 20 ft. for two-way traffic for the full width of the exit, or as directed by the engineer.

GENERAL NOTE


- 1. Soil used in dike construction shall be machine compacted.
- 2. Top width and height of dike may be modified with prior approval of the Engineer.
- 3. Side slopes within the safety clear zone of a roadway shall be 6:1 or flatter.
- 4. Grading shall be shown elsewhere in the plans or as directed by the Engineer.
- 5. The Engineer reserves the right to modify the dimensions shown for the dike dependent on runoff volume characteristics.
- 6. Dikes that are in place for more than 14 calendar days should be stabilized to prevent sediment runoff.
- 7. The guidelines shown hereon are suggestions only and may be modified by the Engineer.
- 8. Remove sediment and debris when accumulation affects the performance of the devices, after a rain and when directed by the engineer.

	<u> </u>		
DIKE USAGE GUIDELINE	.5		
A Dike may be used to in- unstabilized areas or to erosion control device (s dam, etc.).	divert sedi	ment laden ru	inoff to an
The drainage area contrib exceed 5 acres. The space	2		
Slope of disturbed areas above dike	greater <u>than 10%</u>	5 - 10%	less than 5%
Maximum distance between dikes	100′	200'	300′
Intercepted runoff flowing	na alona a d	ike should ou	itlet to a

stabilized area (vegetation, rock, etc.).

DIKE \rightarrow (D) \rightarrow

Texas Department of Transportation					D	esign ivision tandard		
TEMPORARY EROSION, SEDIMENT AND WATER								
	I 7	1111	JWA	10	<u>- n</u>			
POLLUTION CONTROL MEASURES								
C) I K	ES						
(EARTHWORK FOR	R Ε	RO	SION	С	ON	TROL)		
EC	EC(4)-16							
FILE: ec416	dn:Tx[OT	ск:КМ	DW:	VP	DN/CK: LS		
C TXDOT: JULY 2016	CONT	DNT SECT JOB HIGHWAY						
REVISIONS								
	DIST	DIST COUNTY SHEET NO.						
	YKM COLORADO 39							

DATE:

GENERAL NOTES

1. Pipe outlet material shall conform to the Item "Pipe Underdrains" or as accepted by the Engineer.

2. All pipe connections shall be watertight.

3. Side slopes within the safety clear zone of a roadway shall be 6:1 or flatter. Protect the traveling public from inlet stacks within the clear zone.

4. Sediment basins shall have side slopes of 3:1 or flatter.

The dimensions and limits of excavation for sediment basins and traps will be as shown elsewhere on the plans.

6. The sandbag material shall be made of polypropylene, polyethylene or polyamide woven fabric, min. unit weight 4 ounces /SY, Mullen burst strength exeeding 300 psi and ultraviolet stability exeeding 70%.

7. The guidelines shown hereon are suggestions only and may be modified by the Engineer.

SEDIMENT BASIN & TRAP USAGE GUIDELINES

A sediment basin and/or trap may be used to precipitate sediment out of runoff draining from an unstabilized area.

<u>Basins</u>: The drainage area for a sediment basin should not exceed 100 acres. The basin capacity shall be at least 1800 CF/Acre of drainage area (0.5" over the drainage area). If the disturbed area draining to the basin is larger than 10 acres, the basin capacity should be 3600 CF/Acre (1.0" over the drainage area).

The basin should have a 40 hour draw-down time with an emergency spillway. The spillway may be designed to pass the peak rate of runoff from a 25 year frequency storm. The 100 year storm should be investigated to consider possible flooding impacts.

The entrance into the basin should be protected from erosion. The basin should be cleaned when the capacity has been reduced

Traps: The drainage area for a sediment trap should not exceed 5 acres. The trap capacity should be 1800 CF/Acre (0.5" over the drainage area).

Sediment traps should be placed in the following locations:

- 1. Within drainage ditches spaced @ 500' t on center
- 2. Immediately preceding ditch inlets
- 3. Just before the drainage enters a water course
- 4. Just before the drainage leaves the right of way

The trap outlet may either be through a perforated riser and pipe assembly designed to achieve a 40 hour draw-down time or over a level stabilized area (vegetation, rock, etc.).

The trap should be cleaned when the capacity has been reduced by $\frac{1}{2}$ or the sediment has accumulated to a depth of 1', whichever is less.

sin	Texas Department of	,	Design Division Standard						
Outlet	TEMPORARY EROSION,								
ent Trap	SEDIMENT POLLUTION CC SEDIMENT BA (EARTHWORK FOR	DNT SIN	RC IS	DL M and	EAS TRA	SURES Aps			
ent Trap	EC	(6)	- (16					
	FILE: ec616	dn:TxD	OT	ск:КМ	DW: VP	DN/CK: LS			
	C TXDOT: JULY 2016	CONT	SECT	JOB		HIGHWAY			
with	REVISIONS								
d Outlet		DIST		COUNTY		SHEET NO.			
		YKM		COLORA	DO	40			